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Abstract
In this paper we describe and analyze a data pruning method in
combination with template-based automatic speech recognition.
We demonstrate the positive effects of polishing the template
database by minimizing the word error rate scores. Data prun-
ing allowed to effectively reduce the database size, and there-
fore the model size, by an impressive 30%, with consequent
benefits on the computation time and memory usage.
Index Terms: pruning, template, automatic speech recognition

1. Introduction
Statistical methods for pattern recognition rely on large amounts
of data. In the field of Automatic Speech Recognition (ASR),
experience has so far suggested that the more data are avail-
able, the better the models and the performance of the sys-
tem: “there is no data like more data” cf. [1]. However, huge
amounts of data are difficult to handle as they require plenty
of memory for storing and computational power for training.
Moreover, very large datasets are often automatically annotated
so that the quality of transcriptions and segmentations could
be severely affected. Therefore, from one side, corrupted data
can be compensated by collecting more examples; on the other
side, these new examples can introduce new (possibly fewer,
in percentage) errors. This is perfectly manageable unless the
model grows with the data—even linearly only: this is the case
of Template-based Automatic Speech Recognizers (T-ASRs).
Differently from architectures based on Hidden Markov Mod-
els (HMM), a T-ASR consists of a huge collection of acoustic
realizations (referred to as episodes, examples, or templates)
which are labelled, indexed, and stored in memory. For the
recognition, the input speech is compared, using distance mea-
sures, with the templates. The best template sequence is the one
that minimizes the global distance and possibly other additional
costs. It is therefore evident how daunting a huge increment
of the database could be, both w.r.t. the model size (i.e. the
template database) and the decoding time and complexity.

In the past, so called data pruning (or cleaning, or selection)
techniques were applied to cope with redundant, inaccurate, or
even completely noisy data. These techniques have been in-
vestigated to improve the training phase of HMM-based speech
recognizers. Successful results were obtained for cleaning the
unsupervised part of speech databases [2]. More recently, it has
been proven that a substantial reduction of the whole training
material can be achieved [3]. Nevertheless, data cleaning has
not been very popular for HMM, for a number of reasons. First,
data cleaning can be evaluated only by retraining the HMM: this
is computationally prohibitive. Second, HMMs rely on a com-
pact representation of the training data; on the one hand, most
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of the phonetic details are lost, but on the other hand the para-
metric data representation makes HMMs more robust to noise
and outliers. For instance, unreliable transcriptions or segmen-
tation errors are averaged by the Gaussain models so that their
influence is practically nullified by the overwhelming amount
of correct data. At the same time, techniques such as state ty-
ing cope with data skewness: in less populated classes outliers
could play a more important role. Finally, a more general rea-
son for the limited popularity of data pruning could be that sus-
picious patterns may not always be garbage patterns as noisy
data too might be needed to make the classifier learn difficult
examples. Although ambiguous, many patterns often prove to
be important and do characterize class distributions [4, 5].

As anticipated above, data pruning might be more useful
if not absolutely necessary for a T-ASR. As all single exam-
ples have to be stored and checked against the input patterns
to be recognized, we face problems of memory allocation and
waiting time during recognition. A smaller, reliable subset of
data has the primary advantage of easing and speeding com-
putation. Eventually, spared resources could be dedicated to
important and time demanding tasks such as the fine tuning of
the model’s parameters, which can eventually lead to a perfor-
mance improvement too. Redundant patterns are good candi-
dates to be pruned; they consist of groups of examples that
can be highly inter-correlated: any additional, redundant ex-
ample does not add, in general, useful information that can be
successfully exploited by the recognizer. Also discarding tem-
plates responsible of errors might be beneficial. In our frame-
work, the two more common sources of errors are the presence
of outliers and of noisy segmentations; either source is proba-
bly more challenging to cope with than for HMMs, above all
in a high dimensional feature space as the one we are work-
ing on [6]. Outliers are macroscopic errors mainly introduced
during the annotation phase: the collection of large amounts of
data to be manually labelled inevitably implies a certain number
of wrong transcriptions. These examples, lying at the edges of
class distributions, might be particularly detrimental as they can
compromise the matching heavily. Moreover, the forced align-
ment needed to construct the template database is responsible
in large part for fine-grained segmentation errors. Both these
types of error sources can be tackled by data pruning methods.

In this paper we present an iterative pruning strategy that
eliminates more and more patterns from an initial database; at
each iteration feedback is provided by the WER of the current
model. The aim is to discard both noisy and redundant exam-
ples. Noisy patterns can be spotted by minimizing the WER
on left-out data; as immediate side effect, redundant patterns
too can be isolated by the down-sampling as long as the WER
is non-increasing. Such an approach could be possible only
thanks to the nature of the T-ASR: no re-training of the mod-
els is needed after each iteration, because the model coincides
with the (pruned) template database.
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Table 1: The Wall Street Journal database: training set (WSJ)
and evaluation sets (dev.92 & eva.92).

data-set spk. hours words sent. phon.

WSJ 284 81 644k 38k 2.8M
dev.92 10 0:34 6724 403 21.1k
eva.92 8 0:30 5643 333 16.7k

In Sec. 2 we describe the data that were used to train the
HMM models and the template database. The system structure
is drawn in Sec. 3 and the data pruning algorithm in Sec. 4.
Finally, in Sec. 5 we present the results obtained so far and in
Sec. 6 we conclude with a discussion on this and future work.

2. Data
The Wall Street Journal (WSJ) continuous speech recognition
training corpus, consisting of almost 80 hours of speech, was
chosen as training material for the HMM models. For testing,
we opted for the 20k open vocabulary test set (eva.92) which is
evaluated in combination with bi- and tri-grams language mod-
els. The dev.92 dataset was used to optimize the LM weights
and word insertion penalty parameters used for the decoding.
More details on the database are sketched in Tab. 1.

The template database was obtained by forced aligning the
WSJ training data using triphone units. This yielded 2.8 mil-
lions of templates. In total we count 4264 template (or triphone)
classes populated by (approximately) 150 up to 12000 (for a
schwa allophone) different speech realizations.

3. System
The template-based ASR used for this work is a 2-layer recog-
nizer. In the first layer, Word Graphs (WGs) are generated using
classic acoustic and language models. In the second layer, the
WG arcs are expanded into triphones, then the WGs are op-
timized, and finally triphones are mapped onto triphone tem-
plates. Detailed information on the system can be found in
[7], however a few differences have been introduced for the
purpose of this work. The main difference is that the second
layer is characterized by a pure template matching. Moreover,
to ease the computational burden, we skipped the application
of additional costs to the graph, such as the natural succes-
sor cost, cf. [8]. To illustrate the quality of the baseline sys-
tem, in Tab. 2 we present recognition results on the dev.92
and eva.92 datasets and compare the T-ASR with SPRAAK,
an HMM-based state-of-the-art ASR.

In the first layer, WGs are generated using our in-house
ASR engine, SPRAAK [9]. SPRAAK front-end extracts 72-
dimensional feature vectors: 24 Mel-based coefficients with first
and second order derivatives. VTLN and a decorrelation algo-
rithm (MIDA, a generalized LDA) are later applied so that the
final feature vector can be reduced to 36 features. The acoustic
models are triphone based: 15.8k cross-word triphones models
trained on the entire WSJ database share 3.4k states and each
state distribution choses from a pool of 32.7k diagonal covari-
ance Gaussians. Using these models we were able to build WGs
from the training material, and from the dev.92 and eva.92
evaluation sets. In Tab. 2, we present the most salient character-
istics of these WGs, such as the graph error rate (GER) and the
word density: the former is an indication of the compactness
of the graphs, while the latter is a lower bound of achievable
WER. Clearly, a stronger top-down knowledge (tri- instead of

bi-grams) considerably reduces the graph size.
The second layer is sketched in Fig. 1 and is the cascade

of two stages, WG expansion and rescoring, and decoding. The
rescoring/expansion is obtained by matching every available ex-
ample, among the 2.8 millions present in the template dataset,
against every candidate triphone on the WG. For each compar-
ison, 1) a Dynamic Time Warping (DTW) score has to be com-
puted, 2) best-matching templates have to be sorted by least
distance, and 3) triphones are expanded 50 times (i.e. 50 new
arcs are created) and best DTW scores are assigned to the arcs.

A good graph is crucial for a template system like ours,
more than it is for HMM-based speech recognizers: the phone
graph must be as small as possible to reduce the computation
time for the WG recoring, which is very expensive. It is impor-
tant to stress that the phone graph must also contain paths corre-
sponding to the true transcription because the template match-
ing will not emit any new hypothesis: the only purpose of the
template matching is to re-estimate arcs’ acoustic weights in
the light of the new template paradigm. Finally, a Viterbi search
(with open beam) is run on the newly expanded WG. As it might
be expected also this decoding phase is much more expensive
than running the search on the original graph.

4. Pruning
To prune wrong or unnecessary examples from the large tem-
plate database, we resorted to an iterative evaluation of the train-
ing material. The idea is to eliminate, at each iteration, those
templates that are potentially responsible for recognition errors.
Therefore, each iteration can be outlined as the succession of
the following three steps:

pr. 1 Decode the WGs; evaluation (WER).

pr. 2 Select the templates aligned to wrongly recognized words.

pr. 3 a) Prune all selected templates.

OR

b) Compute the occurrence histogram of the templates
selected at pr. 2; prune only those templates, which be-
long to the tail of the histogram (one occurrence only);

No retraining is necessary at all, as the model is the data: such
an approach would have been practically unfeasible using a
large parametric model, such as large HMMs, because even few
iterations would have taken months with the current technology.

The selection step (pr. 2) can be optionally reinforced by an
inspection of the histogram of the selected templates (pr. 3b):
instead of deleting all templates (pr. 3a) we can alternatively
proceed more conservatively and eliminate singletons only, i.e.
the templates that appear only once at each iteration and that

WG
rescoring

expansion

templates

WER
decoding

selection
templatepruning

Figure 1: Second layer: WG rescoring/expansion using tem-
plates, and WG decoding (and evaluation). The final WER can
be used as feedback information to either prune the rescored
WG (dashed line), or the template database (dotted line).
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Table 2: Baseline: On the left (a), Word densities and Graph Error Rate (GER) of the WGs obtained after the first decoding layer. Next,
the performance of WG decoding using (HMM) acoustic models, in the middle (b), and using templates, on the right (c). Performance
is measured in Word Error Rate (WER). Tests on the WSJ were done using an extended bi-gram LM to cope with OOV words.

Word density GER
LM WSJ dev.92 eva.92 WSJ dev.92 eva.92
2-gr. 1.9 7.40 7.13 0.26 2.53 2.68
3-gr. - 5.32 5.16 - 2.54 2.68

WER

WSJ dev.92 eva.92
1.32 10.17 9.78

- 7.99 8.17

WER

WSJ dev.92 eva.92
2.47 11.97 12.01

- 9.32 9.50

are confined in the tail of the error distribution. The rationale
behind this approach is that, due to the large number of tem-
plates in the database, the chance of selecting several bad tem-
plates per iteration is low; the mode of the histogram is more
likely due to good, frequent, more prototypical templates which
are nevertheless employed for the recognition of—often only
partially—wrong words. The effect of the pruning using the
information in the histogram can be appreciated by comparing
Fig. 3 and 4 and will be discussed in the next section.

Practically, such a feedback algorithm can be applied at two
different levels in our system. Templates can be eliminated from
the template dataset, i.e. WG rescoring should be repeated at
each iteration (this is represented by the dotted line in Fig. 1);
alternatively they can be pruned from the WGs we are optimiz-
ing the pruning on (dashed line in Fig. 1); in this latter case only
WG decoding must take place at each iteration. The former ap-
proach is possibly more precise because the WG arcs are ex-
panded with a relatively small number of templates to keep the
size reasonably limited, however this certainly implies higher
computation costs. For this reason, for the experiments pre-
sented in this paper we opted for the latter approach, which we
deemed a fair approximation of database pruning. Note that
both approaches can be combined, and that, for instance, the
WGs can be rescored again with the surviving templates in the
database after a fixed number of decoding and selection steps.

Preliminary results showed that the template selection based
on the dev.92 set is not sufficiently robust because of lack of
acoustic variability: the dev.92 data contain too few speakers
(10). For this reason, we optimized the pruning iterations on
the template dataset directly by cross validation. More specif-
ically, we resorted to leave-one-speaker-out: the WSJ training
dataset was split into 284 parts, each part consisting of all the
utterances—one WG per utterance—from the same speaker; the
template-based ASR was then tested 284 times on each speaker
individually exploiting the templates from all other speakers.
Additionally, OOV words were added to the bi-gram LM used
for optimization: in this way we avoided to select those words
that could have merely been OOV. The starting WER over all
speakers was quite low 2.47% and could be reduced to 0.26%
(cf. Tab. 2.c) during the optimization.

5. Experiments and results
The iterative pruning algorithm explained in Sec. 4 was run for
a number of times until a minimum in the WER was found.
The optimization using the algorithm without histogram prun-
ing (pr. 3a) is shown in Fig. 3: a minimum is found relatively
soon, at 12 iterations. However, the list of templates to be dis-
carded at this point is already rather populated, corresponding
to approximately 11% of the entire template dataset. In Fig. 2
we tested the pruned template database on the eva.92 evalua-
tion set, using bi- or tri-grams. The WER remained unaltered,
while the size of the WGs was hugely reduced, approximately
by 12%. It is worth mentioning that the pruning is equally effec-

tive on WGs in combination with tri-grams, which are generally
smaller and of better quality in terms of WER.

Fig. 4 shows the optimization curve of pruning when the
templates to be eliminated belong to the tail of their distribu-
tion (pr. 3b in Sec. 4). The minimum is reached after a larger
number of iterations (39) because the selection of bad templates
is more selective and more precise: the WER in the minimum
is 50% lower than if all templates were used. Although the
number of pruned templates also grows slowly, a much larger
number of examples are eventually marked for deletion. More
specifically the pruned database is now almost 29% smaller and
the WGs of the eva.92 dataset (see Fig. 2) are 30% smaller
independently of the LM used. Using the complete pruning al-
gorithm, however, does not improve the WER on the evaluation
set either. These results corroborate our assumption that wrong
words contain many good, though redundant, templates too.

The robustness and the stability of the pruning can be ascer-
tained from the boxes at the bottom of Fig. 3 and 4. A number
(>30) of random pruning steps was also performed on the train-
ing set and the respective pruned template databases were tested
on the eva.92 set as well. In this way we were able to compare
the algorithm described in Sec. 4 with a pure random selection.
The average results and the relative standard errors of random
pruning are shown in gray in Fig. 4; the results are always sig-
nificantly worse than the complete pruning algorithm. This is
not the case if histogram information is not used (pr. 3a). From
the same figures we can appreciate how stable the pruning is
w.r.t. the number of iterations. The hull of the minimum is wide
during optimization and almost flat in the evaluation phase.

6. Conclusions and future work
In this work we presented a framework characterized by the
symbiosis between data pruning and template-based ASR. Prun-
ing by WER optimization was feasible only thanks to the non-
parametric nature of the system. On the other side, pruning
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Figure 2: Pruning effects in terms of WG size (# of arcs) and
WER (%) obtained on the eva.92 evaluation set. Results with-
out (pr. 3a) and with (pr. 3b) histogram pruning. Bi- and tri-
gram language models are also compared.
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Figure 3: Example of template pruning with bi-grams. Above:
optimization without histogram pruning (pr. 3a). Middle: num-
ber of templates pruned at each iteration. Below: pruning eval-
uation on the eva.92 dataset compared to random, multiple
pruning (mean and standard errors are shown).

was impressively effective in reducing the ‘model’ size of the
T-ASR: the template dataset could be reduced by almost 30%
relative, and WG size decreased by quite the same amount.

However, further inspection of the results suggests that even
more can be probably gained: although the choice of the objec-
tive function would have suggested differently, the WER did
not decrease. This needs further investigation because a deep
minimum of the WER has been observed during the pruning of
the train database; the drop in the WER, however, does not gen-
eralize to unseen data and the minimum (if present) found on
the evaluation data is shifted (Fig. 3). In the future, we plan to
tackle this problem and look for accuracy improvements.

We would like to stress the fact that a much more compact
set of templates does not only lead to a huge reduction of mem-
ory usage and of computation time for rescoring and decod-
ing. It also paves the road to more elaborate search algorithms
and to the exploitation of additional databases. So far, com-
plex searches that consist of, e.g., introducing additional costs
on the WG arcs, have been too time consuming but can now be
speeded up considerably.

Another valuable feature of the template selection proposed
in this paper is the analytical framework it offers. Templates that
are responsible of recognition errors can be easily identified and
subsequently analyzed. In this way, we hope that our system
will help shedding more light on the contribution of phonetic
details to ASR.

Finally, the pruning itself can be ameliorated: pruning in-
volves hard decisions; a template is either eliminated or not.
This could be detrimental as too many examples can be dis-
carded too early: in general, decisions should be postponed as
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Figure 4: As Fig. 3, with tri-grams. Template pruning by ex-
ploiting histogram information (pr. 3b).

much as possible (principle of least commitment). By setting a
penalizing score at WG arcs instead of deleting them, we could
probably obtain even more reliable WGs. Hard decisions have
the advantage of not introducing additional weights and of re-
ducing the size of the graphs. However, further analyses are
needed of penalizing scores that rely on the same framework as
described in this paper.
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