next up previous contents
Next: About this document ... Up: LS-SVMlab Toolbox User's Guide Previous: windowize & windowizeNARX   Contents

Bibliography

1
Baudat G., Anouar F. (2001), ``Kernel-based methods and function approximation'', in International Joint Conference on Neural Networks (IJCNN 2001), Washington DC USA, 1244-1249.

2
Cawley G.C., Talbot N.L.C. (2002), ``efficient formation of a basis in a kernel induced feature space'', in Proc. European Symposium on Artificial Neural Networks (ESANN 2002), Brugge Belgium, 1-6.

3
Cristianini N., Shawe-Taylor J. (2000), An Introduction to Support Vector Machines, Cambridge University Press.

4
De Brabanter J., Pelckmans K., Suykens J.A.K., Vandewalle J. (2002), ``Robust cross-validation score function for LS-SVM non-linear function estimation'', International Conference on Artificial Neural Networks (ICANN 2002), Madrid Spain, Madrid, Spain, Aug. 2002, 713-719.

5
Evgeniou T., Pontil M., Poggio T. (2000), ``Regularization networks and support vector machines,'' Advances in Computational Mathematics, 13(1), 1-50.

6
Girolami M. (2002), ``Orthogonal series density estimation and the kernel eigenvalue problem'', Neural Computation, 14(3), 669-688.

7
Golub G.H. and Van Loan C.F. (1989), Matrix Computations, Johns Hopkins University Press, Baltimore, MD.

8
Hamers B., Suykens J.A.K., De Moor B. (2001), ``A comparison of iterative methods for least squares support vector machine classifiers'', Internal Report 01-110, ESAT-SISTA, K.U.Leuven (Leuven, Belgium).

9
Hanley J.A., McNeil B.J. (1982), ``The meaning and use of the area under a receiver operating characteristic (ROC) curve'' Radiology 1982; 143, 29-36.

10
Huber P.J. (1964), ``Robust estimation of a location parameter'', Ann. Math. Statist., 35, 73-101.

11
MacKay D.J.C. (1992), ``Bayesian interpolation'', Neural Computation, 4(3), 415-447.

12
Mika S., Schölkopf B., Smola A., Müller K.-R., Scholz M., Ratsch G. (1999), ``Kernel PCA and de-noising in feature spaces'', Advances in Neural Information Processing Systems 11, 536-542, MIT Press.

13
Mika S., Rätsch G., Weston J., Schölkopf B., Müller K.-R. (1999), ``Fisher discriminant analysis with kernels'', In Neural Networks for Signal Processing IX, 41-48, IEEE.

14
Nabney I.T. (2002), Netlab: Algorithms for Pattern Recognition, Springer.

15
Poggio T., Girosi F. (1990), ``Networks for approximation and learning'', Proc. of the IEEE, 78, 1481-1497.

16
Schölkopf B., Burges C., Smola A. (Eds.) (1998), Advances in Kernel Methods - Support Vector Learning, MIT Press.

17
Schölkopf B., Smola A. J., Müller K.-R. (1998), ``Nonlinear component analysis as a kernel eigenvalue problem'', Neural Computation, 10, 1299-1319.

18
Schölkopf B., Smola A. (2002), Learning with Kernels, MIT Press.

19
Smola A.J., Schölkopf B. (2000), ``Sparse greedy matrix approximation for machine learning'', Proc. 17th International Conference on Machine Learning, 911-918, San Francisco, Morgan Kaufman.

20
Stone M. (1974), ``Cross-validatory choice and assessment of statistical predictions'', J. Royal Statist. Soc. Ser. B, 36, 111-147.

21
Suykens J.A.K., Vandewalle J. (1999), ``Least squares support vector machine classifiers'', Neural Processing Letters, 9(3), 293-300.

22
Suykens J.A.K., Vandewalle J. (2000), ``Recurrent least squares support vector machines'', IEEE Transactions on Circuits and Systems-I, 47(7), 1109-1114.

23
Suykens J.A.K., De Brabanter J., Lukas L., Vandewalle J. (2002), ``Weighted least squares support vector machines : robustness and sparse approximation'', Neurocomputing, Special issue on fundamental and information processing aspects of neurocomputing, 48(1-4), 85-105.

24
Suykens J.A.K., Van Gestel T., Vandewalle J., De Moor B. (2002), ``A support vector machine formulation to PCA analysis and its Kernel version'', IEEE Transactions on Neural Networks, In press.

25
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., Vandewalle J. (2002), Least Squares Support Vector Machines, World Scientific, Singapore.

26
Van Gestel T., Suykens J.A.K., Baestaens D., Lambrechts A., Lanckriet G., Vandaele B., De Moor B., Vandewalle J. (2001) ``Financial time series prediction using least squares support vector machines within the evidence framework'', IEEE Transactions on Neural Networks (special issue on Neural Networks in Financial Engineering), 12(4), 809-821.

27
Van Gestel T., Suykens J.A.K., De Moor B., Vandewalle J. (2001), ``Automatic relevance determination for least squares support vector machine classifiers'', Proc. of the European Symposium on Artificial Neural Networks (ESANN 2001), Bruges, Belgium, 13-18.

28
Van Gestel T., Suykens J., Baesens B., Viaene S., Vanthienen J., Dedene G., De Moor B., Vandewalle J. (2001), ``Benchmarking least squares support vector machine classifiers '', Machine Learning, in press.

29
Van Gestel T., Suykens J.A.K., Lanckriet G., Lambrechts A., De Moor B., Vandewalle J. (2002), ``Bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel fisher discriminant analysis'', Neural Computation, 15(5), 1115-1148.

30
Van Gestel T., Suykens J.A.K., Lanckriet G., Lambrechts A., De Moor B., Vandewalle J. (2002), ``Multiclass LS-SVMs : moderated outputs and coding-decoding schemes'', Neural Processing Letters, 15(1), 45-58.

31
Van Gestel T., Suykens J.A.K., De Moor B., Vandewalle J. (2002), ``Bayesian inference for LS-SVMs on large data sets using the Nyström method'', International Joint Conference on Neural Networks (WCCI-IJCNN 2002), Honolulu, USA, May 2002, 2779-2784.

32
Van Gestel T. (2002), From linear to kernel based methods in classification, modelling and prediction, PhD thesis, K.U. Leuven Department of Electrical Engineering.

33
Vapnik V. (1995), The Nature of Statistical Learning Theory, Springer-Verlag, New York.

34
Vapnik V. (1998), Statistical Learning Theory, John Wiley, New-York.

35
Williams C.K.I., Seeger M. (2001), ``Using the Nyström method to speed up kernel machines'', Advances in neural information processing systems, 13, 682-688, MIT Press.

36
Wahba G.,Wold S. (1975), ``A completely automatic french curve: fitting spline functions by cross-validation'', Comm. Statist., 4, 1-17.

37
Wahba G. (1990), Spline Models for observational data, SIAM, 39.



Kristiaan Pelckmans 2003-02-18