Learning with primal and dual model representations

Johan Suykens
KU Leuven, ESAT-STADIUS
Kasteelpark Arenberg 10
B-3001 Leuven (Heverlee), Belgium
Email: johan.suykens@esat.kuleuven.be http://www.esat.kuleuven.be/stadius/

CIMI 2015, Toulouse

Introduction and motivation

Data world

Challenges

- data-driven
- general methodology
- scalability
- need for new mathematical frameworks

Different paradigms

Different paradigms

Sparsity through regularization or loss function

Sparsity: through regularization or loss function

- through regularization: model $\hat{y}=w^{T} x+b$

$$
\min \sum_{j}\left|w_{j}\right|+\gamma \sum_{i} e_{i}^{2}
$$

\Rightarrow sparse w

- through loss function: model $\hat{y}=\sum_{i} \alpha_{i} K\left(x, x_{i}\right)+b$

$$
\min w^{T} w+\gamma \sum_{i} L\left(e_{i}\right)
$$

\Rightarrow sparse α

Sparsity: matrices and tensors

```
data vector }
y}=\mp@subsup{w}{}{T}
data matrix \(X\) matrix model:
\(\hat{y}=\langle W, X\rangle\)
```

vector model: }\longrightarrow\mathrm{ matrix model:
vector model: }\longrightarrow\mathrm{ matrix model:

matrix X

tensor \mathcal{X}
data vector x
vector model:

$\hat{y}=w^{T} x$$\longrightarrow$| data matrix X |
| :--- |
| matrix model: |
| $\hat{y}=\langle W, X\rangle$ |\longrightarrow| data tensor \mathcal{X} |
| :--- |
| tensor model: |
| $\hat{y}=\langle\mathcal{W}, \mathcal{X}\rangle$ |

Sparsity: matrices and tensors

data vector x		
vector model:		
$\hat{y}=w^{T} x$	\longrightarrow	data matrix X
matrix model:		
	$\hat{y}=\langle W, X\rangle$	
sparsity:	\longrightarrow	data tensor \mathcal{X} tensor model:
$\sum_{j}\left\|w_{j}\right\|$	sparsity:	$\hat{y}=\langle\mathcal{W}, \mathcal{X}\rangle$

Learning with tensors [Signoretto, Tran Dinh, De Lathauwer, Suykens, ML 2014]
Robust tensor completion [Yang, Feng, Suykens, 2014]

Function estimation in RKHS

- Find function f such that [Wahba, 1990; Evgeniou et al., 2000]

$$
\min _{f \in \mathcal{H}_{K}} \frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda\|f\|_{K}^{2}
$$

with $L(\cdot, \cdot)$ the loss function. $\|f\|_{K}$ is norm in RKHS \mathcal{H}_{K} defined by K.

- Representer theorem: for convex loss function, solution of the form

$$
f(x)=\sum_{i=1}^{N} \alpha_{i} K\left(x, x_{i}\right)
$$

Reproducing property $f(x)=\left\langle f, K_{x}\right\rangle_{K}$ with $K_{x}(\cdot)=K(x, \cdot)$

- Sparse representation by ϵ-insensitive loss [Vapnik, 1998]

Learning with primal and dual model representations

Learning models from data: alternative views

- Consider model $\hat{y}=f(x ; w)$, given input/output data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$:

$$
\min _{w} w^{T} w+\gamma \sum_{i=1}^{N}\left(y_{i}-f\left(x_{i} ; w\right)\right)^{2}
$$

Learning models from data: alternative views

- Consider model $\hat{y}=f(x ; w)$, given input/output data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$:

$$
\min _{w} w^{T} w+\gamma \sum_{i=1}^{N}\left(y_{i}-f\left(x_{i} ; w\right)\right)^{2}
$$

- Rewrite the problem as

$$
\begin{array}{cl}
\min _{w, e} & w^{T} w+\gamma \sum_{i=1}^{N} e_{i}^{2} \\
\text { subject to } & e_{i}=y_{i}-f\left(x_{i} ; w\right), i=1, \ldots, N
\end{array}
$$

- Express the solution and the model in terms of Lagrange multipliers α_{i}
- For a model $f(x ; w)=\sum_{j=1}^{h} w_{j} \varphi_{j}(x)=w^{T} \varphi(x)$ one obtains then $\hat{f}(x)=\sum_{i=1}^{N} \alpha_{i} K\left(x, x_{i}\right)$ with $K\left(x, x_{i}\right)=\varphi(x)^{T} \varphi\left(x_{i}\right)$.

Least Squares Support Vector Machines: "core models"

- Regression

$$
\min _{w, b, e} w^{T} w+\gamma \sum_{i} e_{i}^{2} \text { s.t. } y_{i}=w^{T} \varphi\left(x_{i}\right)+b+e_{i}, \quad \forall i
$$

- Classification

$$
\min _{w, b, e} w^{T} w+\gamma \sum_{i} e_{i}^{2} \text { s.t. } y_{i}\left(w^{T} \varphi\left(x_{i}\right)+b\right)=1-e_{i}, \quad \forall i
$$

- Kernel pca ($V=I$), Kernel spectral clustering ($V=D^{-1}$)

$$
\min _{w, b, e}-w^{T} w+\gamma \sum_{i} v_{i} e_{i}^{2} \text { s.t. } e_{i}=w^{T} \varphi\left(x_{i}\right)+b, \forall i
$$

- Kernel canonical correlation analysis/partial least squares

$$
\min _{w, v, b, d, e, r} w^{T} w+v^{T} v+\nu \sum_{i}\left(e_{i}-r_{i}\right)^{2} \text { s.t. }\left\{\begin{aligned}
e_{i} & =w^{T} \varphi^{(1)}\left(x_{i}\right)+b \\
r_{i} & =v^{T} \varphi^{(2)}\left(y_{i}\right)+d
\end{aligned}\right.
$$

[Suykens \& Vandewalle, 1999; Suykens et al., 2002; Alzate \& Suykens, 2010]

Probability and quantum mechanics

- Kernel pmf estimation
- Primal:
$\min _{w, p_{i}} \frac{1}{2}\langle w, w\rangle$ subject to $\quad p_{i}=\left\langle w, \varphi\left(x_{i}\right)\right\rangle, i=1, \ldots, N$ and $\sum_{i=1}^{N} p_{i}=1$
-Dual: $p_{i}=\frac{\sum_{j=1}^{N} K\left(x_{j}, x_{i}\right)}{\sum_{i=1}^{N} \sum_{j=1}^{N} K\left(x_{j}, x_{i}\right)}$
- Quantum measurement: state vector $|\psi\rangle$, measurement operators M_{i} - Primal:
$\min _{|w\rangle, p_{i}} \frac{1}{2}\langle w \mid w\rangle$ subject to $\quad p_{i}=\operatorname{Re}\left(\left\langle w \mid M_{i} \psi\right\rangle\right), i=1, \ldots, N$ and $\sum_{i=1}^{N} p_{i}=1$
- Dual: $p_{i}=\langle\psi| M_{i}|\psi\rangle$ (Born rule, orthogonal projective measurement)
[Suykens, Physical Review A, 2013]

SVMs: living in two worlds ...

Primal space

Feature space

Parametric
$\hat{y}=\operatorname{sign}\left[w^{T} \varphi(x)+b\right]$

$$
K\left(x_{i}, x_{j}\right)=\varphi\left(x_{i}\right)^{T} \varphi\left(x_{j}\right) \text { (Mercer) }
$$

Dual space

$$
\begin{aligned}
& \text { Nonparameric } \\
& \hat{y}=\operatorname{sign}\left[\sum_{i=1}^{\# \operatorname{sv}} \alpha_{i} y_{i} K\left(x, x_{i}\right)+b\right]
\end{aligned}
$$

SVMs: living in two worlds ...

Feature space

Primal space

Parametric

$$
\hat{y}=\operatorname{sign}\left[w^{T} \varphi(x)+b\right]
$$

$$
K\left(x_{i}, x_{j}\right)=\varphi\left(x_{i}\right)^{T} \varphi\left(x_{j}\right)(\text { "Kernel trick") }
$$

Dual space

$$
\hat{y}=\operatorname{sign}\left[\sum_{i=1}^{\# \text { sv }} \alpha_{i} y_{i} K\left(x, x_{i}\right)+b\right]
$$

Linear model: solving in primal or dual?

inputs $x \in \mathbb{R}^{d}$, output $y \in \mathbb{R}$
training set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$

$$
(P): \quad \hat{y}=w^{T} x+b, \quad w \in \mathbb{R}^{d}
$$

Model

Linear model: solving in primal or dual?

inputs $x \in \mathbb{R}^{d}$, output $y \in \mathbb{R}$
training set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$

$$
(P): \quad \hat{y}=w^{T} x+b, \quad w \in \mathbb{R}^{d}
$$

Linear model: solving in primal or dual?

few inputs, many data points: $d \ll N$


```
primal :}w\in\mp@subsup{\mathbb{R}}{}{d
dual: }\alpha\in\mp@subsup{\mathbb{R}}{}{N}\mathrm{ (large kernel matrix: N}\timesN\mathrm{ )
```


Linear model: solving in primal or dual?

many inputs, few data points: $d \gg N$


```
primal: \(w \in \mathbb{R}^{d}\)
    dual : \(\alpha \in \mathbb{R}^{N}\) (small kernel matrix: \(N \times N\) )
```


Feature map and kernel

From linear to nonlinear model:

$$
(P): \quad \hat{y}=w^{T} \varphi(x)+b
$$

Mercer theorem:

$$
K(x, z)=\varphi(x)^{T} \varphi(z)
$$

Feature map $\varphi(x)=\left[\varphi_{1}(x) ; \varphi_{2}(x) ; \ldots ; \varphi_{h}(x)\right]$
Kernel function $K(x, z)$ (e.g. linear, polynomial, RBF, ...)

- Use of feature map and positive definite kernel [Cortes \& Vapnik, 1995]
- Extension to infinite dimensional case:
- LS-SVM formulation [Signoretto, De Lathauwer, Suykens, 2011]
- HHK Transform, coherent states, wavelets [Fanuel \& Suykens, 2015]

HHK transform

- Coherent states $\left\{\left|\eta_{x}\right\rangle \in \mathcal{H}\right\}_{x \in X}$ in

$$
\min _{|w\rangle \in \mathcal{H}, e_{i}, b} \frac{1}{2}\langle w \mid w\rangle_{\mathcal{H}}+\frac{\gamma}{2} \sum_{i=1}^{N} e_{i}^{2} \text { s.t. } y_{i}=\left\langle\eta_{x_{i}} \mid w\right\rangle_{\mathcal{H}}+b+e_{i}, \quad i=1, \ldots, N
$$

$(P): \quad \hat{y}=\left\langle\eta_{x} \mid w\right\rangle_{\mathcal{H}}+b \quad \rightarrow$ transform
M

$$
\downarrow K(x, z)=\left\langle\eta_{x} \mid \eta_{z}\right\rangle_{\mathcal{H}}
$$

$(D): \hat{y}=\sum_{i} \alpha_{i} K\left(x_{i}, x\right)+b$
[Fanuel \& Suykens, TR15-101, 2015]

HHK transform

- Coherent states $\left\{\left|\eta_{x}\right\rangle \in \mathcal{H}\right\}_{x \in X}$ in

$$
\min _{|w\rangle \in \mathcal{H}, e_{i}, b} \frac{1}{2}\langle w \mid w\rangle_{\mathcal{H}}+\frac{\gamma}{2} \sum_{i=1}^{N} e_{i}^{2} \text { s.t. } y_{i}=\left\langle\eta_{x_{i}} \mid w\right\rangle_{\mathcal{H}}+b+e_{i}, \quad i=1, \ldots, N
$$

- HHK Transform: $W_{\eta}: \mathcal{H} \rightarrow \mathcal{H}_{K}:|w\rangle \mapsto\langle\eta . \mid w\rangle_{\mathcal{H}}$

$$
\begin{array}{cc}
(P): \begin{array}{cc}
\hat{y}=\left\langle\eta_{x} \mid w\right\rangle_{\mathcal{H}}+b & \hat{H} \rightarrow \mathcal{H}_{K} \\
& \hat{y}=\left\langle W_{\eta} \eta_{x} \mid W_{\eta} w\right\rangle_{K}+b \\
\downarrow K(x, z)=\left\langle\eta_{x} \mid \eta_{z}\right\rangle_{\mathcal{H}} & \downarrow K(x, z)=\left\langle\xi_{x} \mid \xi_{z}\right\rangle_{K}, \xi_{x}=W_{\eta} \eta_{x} \\
(D): \quad \hat{y}=\sum_{i} \alpha_{i} K\left(x_{i}, x\right)+b & \hat{y}=\sum_{i} \alpha_{i} K\left(x_{i}, x\right)+b
\end{array} .
\end{array}
$$

[Fanuel \& Suykens, TR15-101, 2015]

Sparsity by fixed-size kernel method

Fixed-size method: steps

1. selection of a subset from the data
2. kernel matrix on the subset
3. eigenvalue decomposition of kernel matrix
4. approximation of the feature map based on the eigenvectors (Nyström approximation)
5. estimation of the model in the primal using the approximate feature map (applicable to large data sets)
[Suykens et al., 2002] (ls-svm book)

Selection of subset

- random
- quadratic Renyi entropy
- incomplete Cholesky factorization

Nyström method

- "big" kernel matrix: $\Omega_{(N, N)} \in \mathbb{R}^{N \times N}$ "small" kernel matrix: $\Omega_{(M, M)} \in \mathbb{R}^{M \times M}$ (on subset)
- Eigenvalue decompositions: $\Omega_{(N, N)} \tilde{U}=\tilde{U} \tilde{\Lambda}$ and $\Omega_{(M, M)} \bar{U}=\bar{U} \bar{\Lambda}$
- Relation to eigenvalues and eigenfunctions of the integral equation

$$
\int K\left(x, x^{\prime}\right) \phi_{i}(x) p(x) d x=\lambda_{i} \phi_{i}\left(x^{\prime}\right)
$$

with

$$
\hat{\lambda}_{i}=\frac{1}{M} \bar{\lambda}_{i}, \quad \hat{\phi}_{i}\left(x_{k}\right)=\sqrt{M} \bar{u}_{k i}, \quad \hat{\phi}_{i}\left(x^{\prime}\right)=\frac{\sqrt{M}}{\bar{\lambda}_{i}} \sum_{k=1}^{M} \bar{u}_{k i} K\left(x_{k}, x^{\prime}\right)
$$

[Williams \& Seeger, 2001] (Nyström method in GP)

Fixed-size method: estimation in primal

- For the feature map $\varphi(\cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}^{h}$ obtain an approximation

$$
\tilde{\varphi}(\cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}^{M}
$$

based on the eigenvalue decomposition of the kernel matrix with $\tilde{\varphi}_{i}\left(x^{\prime}\right)=$ $\sqrt{\hat{\lambda}_{i}} \hat{\phi}_{i}\left(x^{\prime}\right) \quad$ (on a subset of size $\left.M \ll N\right)$.

- Estimate in primal:

$$
\min _{\tilde{w}, \tilde{b}} \frac{1}{2} \tilde{w}^{T} \tilde{w}+\gamma \frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\tilde{w}^{T} \tilde{\varphi}\left(x_{i}\right)-\tilde{b}\right)^{2}
$$

Sparse representation is obtained: $\tilde{w} \in \mathbb{R}^{M}$ with $M \ll N$ and $M \ll h$.
[Suykens et al., 2002; De Brabanter et al., CSDA 2010]

Fixed-size method: performance in classification

	pid	spa	mgt	adu	ftc
N	768	4601	19020	45222	581012
$N_{\text {cv }}$	512	3068	13000	33000	531012
$N_{\text {test }}$	256	1533	6020	12222	50000
d	8	57	11	14	54
FS-LSSVM (\# SV)	150	200	1000	500	500
C-SVM (\# SV)	290	800	7000	11085	185000
$\nu-S V M ~(\#$ SV)	331	1525	7252	12205	165205
RBF FS-LSSVM	$76.7(3.43)$	$92.5(0.67)$	$86.6(0.51)$	$85.21(0.21)$	$81.8(0.52)$
Lin FS-LSSVM	$77.6(0.78)$	$90.9(0.75)$	$77.8(0.23)$	$83.9(0.17)$	$75.61(0.35)$
RBF C-SVM	$75.1(3.31)$	$92.6(0.76)$	$85.6(1.46)$	$84.81(0.20)$	$81.5(\mathrm{no} \mathrm{cv})$
Lin C-SVM	$76.1(1.76)$	$91.9(0.82)$	$77.3(0.53)$	$83.5(0.28)$	$75.24(\mathrm{no} \mathrm{cv})$
RBF $\nu-S V M$	$75.8(3.34)$	$88.7(0.73)$	$84.2(1.42)$	$83.9(0.23)$	$81.6(\mathrm{no} \mathrm{cv})$
Maj. Rule	$64.8(1.46)$	$60.6(0.58)$	$65.8(0.28)$	$83.4(0.1)$	$51.23(0.20)$

- Fixed-size (FS) LSSVM: good performance and sparsity wrt C-SVM and ν-SVM
- Challenging to achieve high performance by very sparse models
[De Brabanter et al., CSDA 2010]

Two stages of sparsity

primal	
dual	subset selection Nyström approximation

Two stages of sparsity

	stage 1
primal	FS model estimation
dual	subset selection Nyström approximation

Two stages of sparsity

	stage 1	stage 2			
primal	FS model estimation	\longrightarrow		reweighted ℓ_{1}	
---:	:---				
dual	\uparrow				
subset selection Nyström approximation					

Synergy between parametric \& kernel-based models [Mall \& Suykens, IEEE-TNNLS 2015], reweighted ℓ_{1} [Candes et al., 2008]

Two stages of sparsity

	stage 1	stage 2			
primal	FS model estimation	\longrightarrow		reweighted ℓ_{1}	
---:	:---				
dual	subset selection Nyström approximation				

Synergy between parametric \& kernel-based models [Mall \& Suykens, IEEE-TNNLS 2015], reweighted ℓ_{1} [Candes et al., 2008]

Other possible approaches with improved sparsity: SCAD [Fan \& Li, 2001]; coefficientbased $\ell_{q}(0<q \leq 1)$ [Shi et al., 2013]; two-level ℓ_{1} [Huang et al., 2014]

Kernel-based models for spectral clustering

Kernel PCA

- Primal problem: [Suykens et al., 2002]

$$
\min _{w, b, e} \frac{1}{2} w^{T} w-\frac{1}{2} \gamma \sum_{i=1}^{N} e_{i}^{2} \text { s.t. } e_{i}=w^{T} \varphi\left(x_{i}\right)+b, i=1, \ldots, N .
$$

- Dual problem corresponds to kernel PCA [Scholkopf et al., 1998]

$$
\Omega_{c} \alpha=\lambda \alpha \text { with } \lambda=1 / \gamma
$$

with $\Omega_{c, i j}=\left(\varphi\left(x_{i}\right)-\hat{\mu}_{\varphi}\right)^{T}\left(\varphi\left(x_{j}\right)-\hat{\mu}_{\varphi}\right)$ the centered kernel matrix.

- Interpretation:

1. pool of candidate components (objective function equals zero)
2. select relevant components

- Robust and sparse versions [Alzate \& Suykens, 2008]: by taking other loss functions

Robustness: Kernel Component Analysis

KPCA reconstruction

corrupted image

KCA reconstruction

Weighted LS-SVM [Alzate \& Suykens, IEEE-TNN 2008]: robustness and sparsity

Kernel Spectral Clustering (KSC): case of two clusters

- Primal problem: training on given data $\left\{x_{i}\right\}_{i=1}^{N}$

$$
\begin{array}{cl}
\min _{w, b, e} & \frac{1}{2} w^{T} w-\gamma \frac{1}{2} e^{T} V e \\
\text { subject to } & e_{i}=w^{T} \varphi\left(x_{i}\right)+b, \quad i=1, \ldots, N
\end{array}
$$

with weighting matrix V and $\varphi(\cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}^{h}$ the feature map.

- Dual:

$$
\begin{aligned}
& \qquad V M_{V} \Omega \alpha=\lambda \alpha \\
& \text { with } \lambda=1 / \gamma, M_{V}=I_{N}-\frac{1}{1_{N}^{T} V 1_{N}} 1_{N} 1_{N}^{T} V \text { weighted centering matrix, } \\
& \Omega=\left[\Omega_{i j}\right] \text { kernel matrix with } \Omega_{i j}=\varphi\left(x_{i}\right)^{T} \varphi\left(x_{j}\right)=K\left(x_{i}, x_{j}\right)
\end{aligned}
$$

- Taking $V=D^{-1}$ with degree matrix $D=\operatorname{diag}\left\{d_{1}, \ldots, d_{N}\right\}$ and $d_{i}=$ $\sum_{j=1}^{N} \Omega_{i j}$ relates to random walks algorithm.
[Alzate \& Suykens, IEEE-PAMI, 2010]

Lagrangian and conditions for optimality

- Lagrangian:

$$
\mathcal{L}(w, b, e ; \alpha)=\frac{1}{2} w^{T} w-\gamma \frac{1}{2} \sum_{i=1}^{N} v_{i} e_{i}^{2}+\sum_{i=1}^{N} \alpha_{i}\left(e_{i}-w^{T} \varphi\left(x_{i}\right)-b\right)
$$

- Conditions for optimality:

$$
\left\{\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial w}=0 \quad \Rightarrow \quad w=\sum_{i} \alpha_{i} \varphi\left(x_{i}\right) \\
\frac{\partial \mathcal{L}}{\partial b}=0 \quad \Rightarrow \quad \sum_{i} \alpha_{i}=0 \\
\frac{\partial \mathcal{L}}{\partial e_{i}}=0 \quad \Rightarrow \quad \alpha_{i}=\gamma v_{i} e_{i}, i=1, \ldots, N \\
\frac{\partial \mathcal{L}}{\partial \alpha_{i}}=0 \quad \Rightarrow \quad e_{i}=w^{T} \varphi\left(x_{i}\right)+b, i=1, \ldots, N
\end{array}\right.
$$

- Eliminate w, b, e, write solution in Lagrange multipliers α_{i}.

Kernel spectral clustering: more clusters

- Case of k clusters: additional sets of constraints

$$
\begin{array}{cl}
\min _{w^{(l)}, e^{(l)}, b_{l}} & \frac{1}{2} \sum_{l=1}^{k-1} w^{(l)^{T}} w^{(l)}-\frac{1}{2} \sum_{l=1}^{k-1} \gamma_{l} e^{(l)^{T}} D^{-1} e^{(l)} \\
\text { subject to } & e^{(1)}=\Phi_{N \times n_{h}} w^{(1)}+b_{1} 1_{N} \\
& e^{(2)}=\Phi_{N \times n_{h}} w^{(2)}+b_{2} 1_{N} \\
& \vdots \\
& e^{(k-1)}=\Phi_{N \times n_{h}} w^{(k-1)}+b_{k-1} 1_{N}
\end{array}
$$

where $e^{(l)}=\left[e_{1}^{(l)} ; \ldots ; e_{N}^{(l)}\right]$ and $\Phi_{N \times n_{h}}=\left[\varphi\left(x_{1}\right)^{T} ; \ldots ; \varphi\left(x_{N}\right)^{T}\right] \in \mathbb{R}^{N \times n_{h}}$.

- Dual problem: $M_{D} \Omega \alpha^{(l)}=\lambda D \alpha^{(l)}, l=1, \ldots, k-1$.
[Alzate \& Suykens, IEEE-PAMI, 2010]

Primal and dual model representations

k clusters
$k-1$ sets of constraints (index $l=1, \ldots, k-1$)

$$
(P): \quad \operatorname{sign}\left[\hat{e}_{*}^{(l)}\right]=\operatorname{sign}\left[w^{(l)^{T}} \varphi\left(x_{*}\right)+b_{l}\right]
$$

$$
(D): \quad \operatorname{sign}\left[\hat{e}_{*}^{(l)}\right]=\operatorname{sign}\left[\sum_{j} \alpha_{j}^{(l)} K\left(x_{*}, x_{j}\right)+b_{l}\right]
$$

Advantages of kernel-based setting

- model-based approach
- out-of-sample extensions, applying model to new data
- consider training, validation and test data (training problem corresponds to eigenvalue decomposition problem)
- model selection procedures
- sparse representations and large scale methods

Model selection: toy example

BAD

validation set

train + validation + test data

Example: image segmentation

Hierarchical KSC

[Alzate \& Suykens, 2012]

Hierarchical KSC

[Alzate \& Suykens, 2012]

Kernel spectral clustering: sparse kernel models

original image

binary clustering

Incomplete Cholesky decomposition: $\Omega \simeq G G^{T}$ with $G \in \mathbb{R}^{N \times R}$ and $R \ll N$ Image (Berkeley image dataset): 321×481 (154, 401 pixels), 175 SV

Kernel spectral clustering: sparse kernel models

original image

sparse kernel model

Incomplete Cholesky decomposition: $\Omega \simeq G G^{T}$ with $G \in \mathbb{R}^{N \times R}$ and $R \ll N$ Image (Berkeley image dataset): 321×481 (154, 401 pixels), 175 SV
Time-complexity $\mathrm{O}\left(R^{2} N^{2}\right)$ in [Alzate \& Suykens, 2008]
Time-complexity $\mathrm{O}\left(R^{2} N\right)$ in [Novak, Alzate, Langone, Suykens, 2014]

Incomplete Cholesky decomposition and reduced set

- For KSC problem $M_{D} \Omega \alpha=\lambda D \alpha$, solve the approximation

$$
U^{T} M_{D} U \Lambda^{2} \zeta=\lambda \zeta
$$

from $\Omega \simeq G G^{T}$, singular value decomposition $G=U \Lambda V^{T}$ and $\zeta=U^{T} \alpha$. A smaller matrix of size $R \times R$ is obtained instead of $N \times N$.

- Pivots are used as subset $\left\{\tilde{x}_{i}\right\}$ for the data
- Reduced set method [Scholkopf et al., 1999]: approximation of $w=$ $\sum_{i=1}^{N} \alpha_{i} \varphi\left(x_{i}\right)$ by $\tilde{w}=\sum_{j=1}^{M} \beta_{j} \varphi\left(\tilde{x}_{j}\right)$ in the sense

$$
\min _{\beta}\|w-\tilde{w}\|_{2}^{2}
$$

- Sparser solutions by adding ℓ_{1} penalty, reweighted ℓ_{1} or group Lasso.
[Alzate \& Suykens, 2008, 2011; Mall \& Suykens, 2014]

Incomplete Cholesky decomposition and reduced set

- For KSC problem $M_{D} \Omega \alpha=\lambda D \alpha$, solve the approximation

$$
U^{T} M_{D} U \Lambda^{2} \zeta=\lambda \zeta
$$

from $\Omega \simeq G G^{T}$, singular value decomposition $G=U \Lambda V^{T}$ and $\zeta=U^{T} \alpha$. A smaller matrix of size $R \times R$ is obtained instead of $N \times N$.

- Pivots are used as subset $\left\{\tilde{x}_{i}\right\}$ for the data
- Reduced set method [Scholkopf et al., 1999]: approximation of $w=$ $\sum_{i=1}^{N} \alpha_{i} \varphi\left(x_{i}\right)$ by $\tilde{w}=\sum_{j=1}^{M} \beta_{j} \varphi\left(\tilde{x}_{j}\right)$ in the sense

$$
\min _{\beta}\|w-\tilde{w}\|_{2}^{2}+\nu \sum_{j}\left|\beta_{j}\right|
$$

- Sparser solutions by adding ℓ_{1} penalty, reweighted ℓ_{1} or group Lasso.
[Alzate \& Suykens, 2008, 2011; Mall \& Suykens, 2014]

Core models + constraints

Core models + constraints

Kernel spectral clustering: adding prior knowledge

- Pair of points $x_{\dagger}, x_{\ddagger}$: $c=1$ must-link, $c=-1$ cannot-link
- Primal problem [Alzate \& Suykens, IJCNN 2009]

$$
\begin{array}{cl}
\min _{w^{(l)}, e^{(l)}, b_{l}} & -\frac{1}{2} \sum_{l=1}^{k-1} w^{(l)^{T}} w^{(l)}+\frac{1}{2} \sum_{l=1}^{k-1} \gamma_{l} e^{(l)^{T}} D^{-1} e^{(l)} \\
\text { subject to } & e^{(1)}=\Phi_{N \times n_{h}} w^{(1)}+b_{1} 1_{N} \\
& \vdots \\
& e^{(k-1)}=\Phi_{N \times n_{h}} w^{(k-1)}+b_{k-1} 1_{N} \\
& w^{(1)^{T}} \varphi\left(x_{\dagger}\right)=c w^{(1)^{T}} \varphi\left(x_{\ddagger}\right) \\
& \vdots \\
& w^{(k-1)^{T}} \varphi\left(x_{\dagger}\right)=c w^{(k-1)^{T}} \varphi\left(x_{\ddagger}\right)
\end{array}
$$

- Dual problem: yields rank-one downdate of the kernel matrix

Adding prior knowledge

original image

without constraints

Adding prior knowledge

original image

with constraints

Semi-supervised learning using KSC (1)

- N unlabeled data, but additional labels on $M-N$ data $\mathcal{X}=\left\{x_{1}, \ldots, x_{N}, x_{N+1}, \ldots, x_{M}\right\}$
- Kernel spectral clustering as core model (binary case [Alzate \& Suykens, WCCI 2012], multi-way/multi-class [Mehrkanoon et al., TNNLS 2015])

$$
\begin{aligned}
\min _{w, e, b} & \frac{1}{2} w^{T} w-\gamma \frac{1}{2} e^{T} D^{-1} e+\rho \frac{1}{2} \sum_{m=N+1}^{M}\left(e_{m}-y_{m}\right)^{2} \\
\text { subject to } & e_{i}=w^{T} \varphi\left(x_{i}\right)+b, i=1, \ldots, M
\end{aligned}
$$

Dual solution is characterized by a linear system. Suitable for clustering as well as classification.

- Other approaches in semi-supervised learning and manifold learning, e.g. [Belkin et al., 2006]

Semi-supervised learning using KSC (2)

Dataset	size	n_{L} / n_{U}	test (\%)	FS semi-KSC	RD semi-KSC	Lap-SVMp
Spambase	4597	$368 / 736$	$919(20 \%)$	0.885 ± 0.01	0.883 ± 0.01	0.880 ± 0.03
Satimage	6435	$1030 / 1030$	$1287(20 \%)$	0.864 ± 0.006	0.831 ± 0.009	0.834 ± 0.007
Ring	7400	$592 / 592$	$1480(20 \%)$	0.975 ± 0.005	0.974 ± 0.005	0.972 ± 0.006
Magic	19020	$761 / 1522$	$3804(20 \%)$	0.836 ± 0.006	0.829 ± 0.006	0.827 ± 0.005
Cod-rna	331152	$1325 / 1325$	$66230(20 \%)$	0.957 ± 0.006	0.947 ± 0.008	0.951 ± 0.001
Covertype	581012	$2760 / 2760$	$29050(5 \%)$	0.715 ± 0.005	0.684 ± 0.008	0.697 ± 0.001
		$2760 / 27600$		0.729 ± 0.04	0.709 ± 0.05	-
		$2760 / 82800$		0.739 ± 0.04	0.716 ± 0.03	-
		$2760 / 138000$		0.742 ± 0.05	0.723 ± 0.06	-

FS semi-KSC: Fixed-size semi-supervised KSC
RD semi-KSC: other subset selection related to [Lee \& Mangasarian, 2001]
Lap-SVM: Laplacian support vector machine [Belkin et al., 2006]
[Mehrkanoon \& Suykens, 2014]

Semi-supervised learning using KSC (3)

original image

given a few labels

KSC

semi-supervised KSC

[Mehrkanoon, Alzate, Mall, Langone, Suykens, IEEE-TNNLS 2015], videos

SVD from LS-SVM

SVD within the LS-SVM setting (1)

- Singular Value Decomposition (SVD) of $A \in \mathbb{R}^{N \times M}$

$$
A=U \Sigma V^{T}
$$

with $U^{T} U=I_{N}, V^{T} V=I_{M}, \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right) \in \mathbb{R}^{N \times M}$.

- Obtain two sets of data points (rows and columns): $x_{i}=A^{T} \epsilon_{i}, z_{j}=A \varepsilon_{j}$ for $i=1, \ldots, N, j=1, \ldots, M$ where $\epsilon_{i}, \varepsilon_{j}$ are standard basis vectors of dimension N and M.
- Compatible feature maps: $\varphi: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}, \psi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ where

$$
\begin{aligned}
& \varphi\left(x_{i}\right)=C^{T} x_{i}=C^{T} A^{T} \epsilon_{i} \\
& \psi\left(z_{j}\right)=z_{j}=A \varepsilon_{j}
\end{aligned}
$$

with $C \in \mathbb{R}^{M \times N}$ a compatibility matrix.
[Suykens, ACHA, 2015, in press]

SVD within the LS-SVM setting (2)

- Primal problem:
$\min _{w, v, e, r}-w^{T} v+\frac{1}{2} \gamma \sum_{i=1}^{N} e_{i}^{2}+\frac{1}{2} \gamma \sum_{j=1}^{M} r_{j}^{2}$ subject to

$$
\begin{aligned}
& e_{i}=w^{T} \varphi\left(x_{i}\right), i=1, \ldots, N \\
& r_{j}=v^{T} \psi\left(z_{j}\right), j=1, \ldots, M
\end{aligned}
$$

- From the Lagrangian and conditions for optimality one obtains:

$$
\begin{aligned}
{\left[\varphi\left(x_{i}\right)^{T} \psi\left(z_{j}\right)\right][\beta] } & =[\alpha] \tilde{\Lambda} \\
{\left[\psi\left(z_{j}\right)^{T} \varphi\left(x_{i}\right)\right][\alpha] } & =[\beta] \tilde{\Lambda}
\end{aligned}
$$

- Theorem: If $A C A=A$ holds, this corresponds to the shifted eigenvalue problem in Lanczos' decomposition theorem.
- Goes beyond the use of Mercer theorem; extensions to nonlinear SVDs
[Suykens, ACHA, 2015, in press]

Conclusions

- Synergies parametric and kernel based-modelling
- Primal and dual representations
- Sparse kernel models using fixed-size method
- Applications in supervised and unsupervised learning and beyond
- Finite and infinite dimensional case
- Beyond Mercer kernels

> Software: see ERC AdG A-DATADRIVE-B website www.esat.kuleuven.be/stadius/ADB/software.php

Acknowledgements (1)

- Co-workers at ESAT-STADIUS:
M. Agudelo, C. Alaiz, C. Alzate, A. Argyriou, R. Castro, J. De Brabanter, K. De Brabanter, L. De Lathauwer, B. De Moor, M. Espinoza, M. Fanuel, Y. Feng, E. Frandi, B. Gauthier, D. Geebelen, H. Hang, X. Huang, L. Houthuys, V. Jumutc, Z. Karevan, R. Langone, Y. Liu, R. Mall, S. Mehrkanoon, M. Novak, J. Puertas, L. Shi, M. Signoretto, V. Van Belle, J. Vandewalle, S. Van Huffel, C. Varon, X. Xi, Y. Yang, and others
- Many people for joint work, discussions, invitations, organizations
- Support from ERC AdG A-DATADRIVE-B, KU Leuven, GOA-MaNet, OPTEC, IUAP DYSCO, FWO projects, IWT, iMinds, BIL, COST

Acknowledgements (2)

KATHOLIEKE UNIVERSITEIT
 LAUVEN

IIJ iMinds
CONNECT.INNOVATE.CREATE

Thank you

