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Introduction and motivation
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Data world
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Challenges

e data-driven
e general methodology
e scalability

e need for new mathematical frameworks
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Different paradigms

SVM &

Kernel methods

Convex

Optimization
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Sparsity through regularization or loss function
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Sparsity: through regularization or loss function

e through regularization: model § = wlz + b
in 3 o] 4730
i i

= sparse w

e through loss function: model §y = > . a; K (z,x;) + b
min wlw + v Z L(e;)

= sparse «
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Sparsity: matrices and tensors

vector x matrix X tensor X
data vector x data matrix X data tensor X
vector model: — matrix model: — tensor model:
N T A A
y=w'w g = (W, X) jg=W,&)
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Sparsity: matrices and tensors

vector x matrix X tensor X
data vector x data matrix X data tensor X
vector model: — matrix model: — tensor model:
g:wa @=<W,X> @:<W,X>
sparsity: sparsity: sparsity:
D lwj| W[ W]«

Learning with tensors [Signoretto, Tran Dinh, De Lathauwer, Suykens, ML 2014]
Robust tensor completion [Yang, Feng, Suykens, 2014]
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Function estimation in RKHS

e Find function f such that [Wahba, 1990; Evgeniou et al., 2000]

1

N
. 2
Jin ; L(ys, f(2:)) + Al flI %

with L(-, ) the loss function. |[f||x is norm in RKHS Hy defined by K.

e Representer theorem: for convex loss function, solution of the form
N
f(x) = Z a; K (x, ;)
1=1
Reproducing property f(x) = (f, K.)x with K.(-) = K(x, )

e Sparse representation by e-insensitive loss [Vapnik, 1998]
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Learning with primal and dual model representations
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Learning models from data: alternative views

- Consider model § = f(x;w), given input/output data {(z;, v:) Y ;:

N
min whw + Z (yi — flai;w))?
1=1
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Learning models from data: alternative views

- Consider model §j = f(x;w), given input/output data {(x;, )} q:

N
min whw+9) (g — fliw))’
=1

- Rewrite the problem as

. N
I whw + Y Z’i:l 612

w,e

subject to e; =y; — f(zj;w), e =1,.... N

- Express the solution and the model in terms of Lagrange multipliers «;

- For a model f(x;w) = 2?21 wip;(r) = w!¢(x) one obtains then
f(ac) = Zi\il oa; K (z,x;) with K(z,2;) = o(x)p(x;).
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Least Squares Support Vector Machines: “core models”

e Regression
min w w+’yz 2 st oy, =w o(z) +b+e;, Vi

w,b,e

e Classification
- _ .
min w!w + v E s.t. yi(who(z) +0) =1—¢;, Vi

w,b,e

o Kernel pca (V = I), Kernel spectral clustering (V = D™1)

min —w!lw + v Z vier st. e; =wlo(x;) +b, Vi

w,b,e

e Kernel canonical correlation analysis/partial least squares
R T (1) (.

. T T 5 e; = w oW(x;)+0b

min w w-+vv+v e; —1i)° s.t.

zi:( o { ri = vTp®(y) +d

w,v,b,d,e,r

[Suykens & Vandewalle, 1999; Suykens et al., 2002; Alzate & Suykens, 2010]
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Probability and quantum mechanics

e Kernel pmf estimation
— Primal:
min 1 (w, w) subject to p; = (w, p(x;)),i=1,...,N and Zf\lepi =1

w,Pj 2

N
23:1 K(zj,x;)
N N
ZiZl Zj:l K(x]?xZ)

— Dual: Di =

e Quantum measurement: state vector |¢), measurement operators M;
— Primal:

|m>in + (w|w) subject to  p; = Re({w|M)), i =1,...,N and Z,‘Z\ilpi =1
w),pi

— Dual: p; = (| M;[1p) (Born rule, orthogonal projective measurement)

[Suykens, Physical Review A, 2013]
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SVMs: living in two worlds ...

Primal space
Parametric

g = sign[w’ ¢(z) + b]
p1(x)

L{XH

@nh(ﬂf)
K (x,25) = @(x;)" p(z;) (Mercer)

Dual space

Nonparametric

g = sign[>0 iy K (x, ;) + b]

Feature space
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SVMs: living in two worlds ...

Primal space
Parametric

g = sign[w’ ¢(z) + b]
p1(x)

L{Xﬂ

@nh(ﬂf)
K(xi,x;) = @(x;)" p(x;) (“Kernel trick”)

2
j—
frm)
)
S
@®©
-
@©
o

Dual space

Nonparametric

g = sign[>0 iy K (x, ;) + b]

Feature space

Non—parametric
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Linear model: solving in primal or dual?

inputs € RY, output y € R

training set {(x;, y;)}Y,
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Linear model: solving in primal or dual?

inputs € RY, output y € R

training set {(x;, y;)}Y,
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Linear model: solving in primal or dual?

few inputs, many data points: d < N

primal || w € R?

dual: o € RY (large kernel matrix: N x N)
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Linear model: solving in primal or dual?

many inputs, few data points: d > N

primal: w € R4
dual | o € RY (small kernel matrix: N x N)
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Feature map and kernel

From linear to nonlinear model:

Mercer theorem:
K(z,2) = ¢(z) ¢(2)

Feature map o(z) = [p1(2); p2(2); ...; pn(2)]
Kernel function K (z, z) (e.g. linear, polynomial, RBF, ...)

e Use of feature map and positive definite kernel [Cortes & Vapnik, 1995]

e Extension to infinite dimensional case:
- LS-SVM formulation [Signoretto, De Lathauwer, Suykens, 2011]
- HHK Transform, coherent states, wavelets [Fanuel & Suykens, 2015]
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HHK transform

e Coherent states {|n,) € H}zex in

N
1 el

. — t 7 — oy b i\ .

|w>gl7:lr,le¢,b2 w|w Z:: S Y (N z‘w>’}—(+ +e;, 1

(P): 9= (nzJw),, +b | — transform

| K(z,2) = <77:C|772>H
(D): g=>, a; K(xj,x2)+b

[Fanuel & Suykens, TR15-101, 2015]
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HHK transform

e Coherent states {|n,) € H}zex in

N
1 el
' 2 b Yi = (e b+e;, 1=1,..,N
w3 i) ; st Y = (N, [w)y ++ei, i

¢ HHK Transform: W, : H — Hg : |w) — (n.|w),,

(P): g=(mlw)yy+b | H—=Hr | §= Wyn|Wyw), +0b
/!
M | K(z,2) = <77:L‘|772>7-( | K(z,2) = <€x|€z> , Ep = Winz
\
(D): g=>, a; K(xj,x2)+b y=> .o K(x;,z)+0b

[Fanuel & Suykens, TR15-101, 2015]
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Sparsity by fixed-size kernel method
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Fixed-size method: steps

1. selection of a subset from the data
2. kernel matrix on the subset
3. eigenvalue decomposition of kernel matrix

4. approximation of the feature map based on the eigenvectors
(Nystrom approximation)

5. estimation of the model in the primal using the approximate feature map
(applicable to large data sets)

[Suykens et al., 2002] (Is-svm book)
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Selection of subset

e random
e quadratic Renyi entropy

e incomplete Cholesky factorization
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Nystrom method

o “big” kernel matrix: Qn n) € RN XN
“small” kernel matrix: Qpspr) € RM*M (on subset)

e Eigenvalue decompositions: €/ n) U=UA and Q(M,M)U =UA

e Relation to eigenvalues and eigenfunctions of the integral equation

/ K (z, 2')gi(@)p(x)dz = Aidi(x)
with

A —_—

Ai = M)\i’ éz(wk) = V.M uy,, z — Zum $l~z,
Ai k=1

[Williams & Seeger, 2001]| (Nystrém method in GP)
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Fixed-size method: estimation in primal

e For the feature map ¢(-) : R — R" obtain an approximation
P(-) : RT — RM

based on the eigenvalue decomposition of the kernel matrix with ¢;(z") =
V' \i #i(2') (on a subset of size M < N).

e Estimate in primal:

DO |

min
0,b

| o .
T + 52_: — 0T (x;) — b)?

Sparse representation is obtained: w € R™ with M < N and M < h.

[Suykens et al., 2002; De Brabanter et al., CSDA 2010]
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Fixed-size method: performance in classification

pid spa mgt adu ftc
N 768 4601 19020 45222 581012
Ny 512 3068 13000 33000 531012
Niest 256 1533 6020 12222 50000
d 8 57 11 14 54
FS-LSSVM (# SV) 150 200 1000 500 500
C-SVM (# SV) 290 800 7000 11085 185000
v-SVM (# SV) 331 1525 7252 12205 165205
RBF FS-LSSVM 76.7(3.43) 92.5(0.67) 86.6(0.51) 85.21(0.21) 81.8(0.52)
Lin FS-LSSVM 77.6(0.78) 90.9(0.75) 77.8(0.23)  83.9(0.17) 75.61(0.35)
RBF C-SVM 75.1(3.31) 92.6(0.76) 85.6(1.46) 84.81(0.20) 81.5(no cv)
Lin C-SVM 76.1(1.76) 91.9(0.82) 77.3(0.53) 83.5(0.28)  75.24(no cv)
RBF v-SVM 75.8(3.34) 88.7(0.73) 84.2(1.42)  83.9(0.23) 81.6(no cv)
Maj. Rule 64.8(1.46) 60.6(0.58) 65.8(0.28) 83.4(0.1) 51.23(0.20)

e Fixed-size (FS) LSSVM: good performance and sparsity wrt C-SVM and v-SVM
e Challenging to achieve high performance by very sparse models

[De Brabanter et al., CSDA 2010]
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Two stages of sparsity

primal

dual

subset selection
Nystrom approximation
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Two stages of sparsity

stage 1

primal

dual

FS model estimation

I

subset selection
Nystrom approximation
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Two stages of sparsity

stage 1 stage 2
primal FS model estimation — reweighted /;
dual subset selection
Nystrom approximation

Synergy between parametric & kernel-based models
[Mall & Suykens, IEEE-TNNLS 2015], reweighted ¢; [Candes et al., 2008]
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Two stages of sparsity

stage 1 stage 2
primal FS model estimation — reweighted /;
dual subset selection
Nystrom approximation

Synergy between parametric & kernel-based models
[Mall & Suykens, IEEE-TNNLS 2015], reweighted ¢; [Candes et al., 2008]

Other possible approaches with improved sparsity: SCAD [Fan & Li, 2001]; coefficient-
based ¢, (0 < g < 1) [Shi et al., 2013]; two-level ¢; [Huang et al., 2014]
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Kernel-based models for spectral clustering

Learning with primal and dual model representations - Johan Suykens

20



Kernel PCA

e Primal problem: [Suykens et al., 2002]

N

.1 1 .
gléré §wTw—§’y;ef s.t. e; =wlo(x;)+b, i=1,...,N.

e Dual problem corresponds to kernel PCA [Scholkopf et al., 1998]
Qca = Aa with A =1/

with Q. = (p(z;) — f,o)* (p(x;) — fi,) the centered kernel matrix.

e Interpretation:
1. pool of candidate components (objective function equals zero)
2. select relevant components

e Robust and sparse versions [Alzate & Suykens, 2008|: by taking other
loss functions

Learning with primal and dual model representations - Johan Suykens 21



Robustness: Kernel Component Analysis

original image corrupted image
=B
_

KPCA reconstruction KCA reconstruction

22 D

Weighted LS-SVM [Alzate & Suykens, IEEE-TNN 2008]: robustness and sparsity
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Kernel Spectral Clustering (KSC): case of two clusters

e Primal problem: training on given data {z;}¥,

T T
1 _ _ _ ‘/

subject to e; = wlp(x;) +b, i=1,...N

with weighting matrix V" and ¢(-) : RY — R" the feature map.

e Dual:
V My Qa = o
with A = 1/, My = Iy — 1T‘1/1 1N17]\}V weighted centering matrix,
N N

Q = [Q;;] kernel matrix with Q;; = p(z;)To(x;) = K(z;, z;)

e Taking V = D~! with degree matrix D = diag{dy,...,dy} and d; =
Zj-vzl );; relates to random walks algorithm.

[Alzate & Suykens, IEEE-PAMI, 2010]
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Lagrangian and conditions for optimality

e Lagrangian:

L(w,b,e;a) = wTw v — sze —|—Zozz C— W gpajz)

e Conditions for optimality:

(0L
8—w:O = w=),;xp(z;)
oL
8£:O = a; =Yve, t=1,.... N
(96@'
oL
\ 80@20 = e, =wlp(®;)+b, i=1,...,N

e Eliminate w, b, e, write solution in Lagrange multipliers «;.

Learning with primal and dual model representations - Johan Suykens
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Kernel spectral clustering: more clusters

e (Case of k clusters: additional sets of constraints

1 il T 1 i T
- IN~,,0%, 0 1 0" p=1,0)
1111 w w (& (&
w(l),e(l)’bl 2 ; 2 ; /YZ

subject to el = @anhw(l) + b11pn

where e() = [egl); ...;eg\l,)] and @, = [p(x

e Dual problem: MpQa) =XDaW, [ =1,... k—1.

[Alzate & Suykens, IEEE-PAMI, 2010]
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Primal and dual model representations

k clusters
k — 1 sets of constraints (index [ =1,....k — 1)

(P): sign[e”] = sign[w®” o(z,) + b
/

(D) signfel’] = sign[y>; 0l K (2., 2;) + b

Learning with primal and dual model representations - Johan Suykens
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Advantages of kernel-based setting

e model-based approach
e out-of-sample extensions, applying model to new data

e consider training, validation and test data
(training problem corresponds to eigenvalue decomposition problem)

e model selection procedures

e sparse representations and large scale methods

Learning with primal and dual model representations - Johan Suykens
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Model selection: toy example

o2 = 0.5, BLF = 0.56

. .
-0.4 -0.2 0

al 04 06 08
&
i,val

-06f o

o®

° 62-0.16,BLF = 1.0 -

—0.‘2 1 : .
(3% ) 0 0.2
i,val
validation set

ogpy v

train + validation + test data
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Example: image segmentation

w
"

2 o
—~ 8 -
SO./ -iﬁ ° -:~° I.-.

oE e
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Hierarchical KSC

1.3
1.2
1.1

0.8

0.8
7
0.6

log10(cr?)

0.5

[Alzate & Suykens, 2012]
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Hierarchical KSC

[/ %]
Q.08
008
anr
008
0,05 -
0.o4a
apa:
LT

am

[Alzate & Suykens, 2012]
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Kernel spectral clustering: sparse kernel models

original image binary clustering

Incomplete Cholesky decomposition: ©Q ~ GG with G € R¥N*® and R < N
Image (Berkeley image dataset): 321 x 481 (154, 401 pixels), 175 SV
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Kernel spectral clustering: sparse kernel models

original image sparse kernel model

Incomplete Cholesky decomposition: Q ~ GG with G € R¥N*® and R < N
Image (Berkeley image dataset): 321 x 481 (154, 401 pixels), 175 SV
Time-complexity O(R*N?) in [Alzate & Suykens, 2008]

Time-complexity O(RQN) in [Novak, Alzate, Langone, Suykens, 2014]

32

Learning with primal and dual model representations - Johan Suykens



Incomplete Cholesky decomposition and reduced set

e For KSC problem MpQa = AD«, solve the approximation

UrMpUA?¢C =X

from Q ~ GG, singular value decomposition G = UAV? and ¢ = U” a.

A smaller matrix of size R X R is obtained instead of NV x N.

e Pivots are used as subset {z;} for the data

e Reduced set method [Scholkopf et al., 1999]: approximation of w =

Zf;il a;p(x;) by W = Z;\il Bip(Z;) in the sense

: ~ 112
min j[jw —w
in | — 3

e Sparser solutions by adding ¢; penalty, reweighted ¢; or group Lasso.

[Alzate & Suykens, 2008, 2011; Mall & Suykens, 2014]
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Incomplete Cholesky decomposition and reduced set

e For KSC problem MpQa = AD«, solve the approximation

UrMpUA?¢C =X

from Q ~ GG, singular value decomposition G = UAV? and ¢ = U” a.

A smaller matrix of size R X R is obtained instead of NV x N.

e Pivots are used as subset {z;} for the data

e Reduced set method [Scholkopf et al., 1999]: approximation of w =

Zf;il a;p(x;) by W = Z;\il Bip(Z;) in the sense
min o — @3+ v 15
J

e Sparser solutions by adding /1 penalty, reweighted ¢; or group Lasso.

[Alzate & Suykens, 2008, 2011; Mall & Suykens, 2014]
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Core models 4+ constraints

Core model +

additional constraints
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Core models 4+ constraints

regularization terms

Core mode +

additional constraints

L1
i |

[ model estimate ]
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Kernel spectral clustering: adding prior knowledge

e Pair of points z,xy: ¢ = 1 must-link, ¢ = —1 cannot-link

e Primal problem [Alzate & Suykens, IJCNN 2009]

1 k1 T 1 k1 T
: 0", 1) (1) —1_(1)
min —— w\ w\” 4+ — e\’ D™ e
w2 ; 2 ; K

subject to el = @anhw(” +bi1n

e Dual problem: yields rank-one downdate of the kernel matrix

Learning with primal and dual model representations - Johan Suykens
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Adding prior knowledge

original image without constraints
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Adding prior knowledge

original image with constraints
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Semi-supervised learning using KSC (1)

e /V unlabeled data, but additional labels on M — N data
X ={x1, ... CN, TN+1, .., T0r}

e Kernel spectral clustering as core model (binary case [Alzate & Suykens,
WCCI 2012], multi-way/multi-class [Mehrkanoon et al., TNNLS 2015])

1 1 1
rglérzl) §wTw — 7y §eTD—1e+,0§ _ZNH(em — Ym)?

subject to e; = wlp(x;) +b, i =1,....,M

Dual solution is characterized by a linear system. Suitable for clustering
as well as classification.

e Other approaches in semi-supervised learning and manifold learning, e.g.
[Belkin et al., 2006]
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Semi-supervised learning using KSC (2)

Dataset size nr/ny test (%) FS semi-KSC RD semi-KSC Lap-SVMp
Spambase 4597 368/736 919 (20%) 0.885 £+ 0.01 0.883 £ 0.01 0.880 £+ 0.03
Satimage 6435 1030/1030 1287 (20%) 0.864 £ 0.006 0.831 & 0.009 0.834 £ 0.007

Ring 7400 592/592 1480 (20%) 0.975 £0.005 0.974 4 0.005 0.972 4 0.006
Magic 19020 761/1522 3804 (20%) 0.836 4+ 0.006 0.829 4+ 0.006 0.827 4 0.005
Cod-rna 331152 1325/1325 66230 (20%) | 0.957 4+ 0.006 0.947 4 0.008 0.951 4 0.001
Covertype | 581012 2760/2760 29050 (5%) 0.715 £ 0.005 0.684 & 0.008 0.697 4 0.001
2760/27600 0.729 4+ 0.04 0.709 £ 0.05 —
2760/82800 0.739 4+ 0.04 0.716 £ 0.03 —
2760/138000 0.742 4+ 0.05 0.723 £ 0.06 —
FS semi-KSC: Fixed-size semi-supervised KSC

RD semi-KSC: other subset selection related to [Lee & Mangasarian, 2001]
Lap-SVM: Laplacian support vector machine [Belkin et al., 2006]

[Mehrkanoon & Suykens, 2014]
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Semi-supervised learning using KSC (3)

original image KSC

given a few labels semi-supervised KSC

gy
.

[Mehrkanoon, Alzate, Mall, Langone, Suykens, IEEE-TNNLS 2015], videos
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SVD from LS-SVM
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SVD within the LS-SVM setting (1)

e Singular Value Decomposition (SVD) of A ¢ RV*M

A=UxV?!
with UTU = Iy, VIV = Iy, ¥ = diag(oy, ...,0,) € RVXM,

e Obtain two sets of data points (rows and columns): z; = A'¢;, z; = Ag;

fori =1,...,N, j=1,...,M where ¢;,¢; are standard basis vectors of
dimension N and M.

e Compatible feature maps: ¢ : RM — RV, ¢ : RY — RY where

CTa:i = CTATEZ'
Zj = A&j

=5
QB
|

with C € RM*YN 3 compatibility matrix.

[Suykens, ACHA, 2015, in press]
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min
w,v,e,r

SVD within the LS-SVM setting (2)

e Primal problem:

N 9

—wlv + %7 > e+ %7 Zj\il r? subject to e; = ngp(:cz-), =1, ...

}o<xi>%<zj>; B = [oA
() p(20)] [ = [FIA

e Theorem: If AC A = A holds, this corresponds to the shifted eigenvalue

problem in Lanczos' decomposition theorem.

e Goes beyond the use of Mercer theorem; extensions to nonlinear SVDs

[Suykens, ACHA, 2015, in press]
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Conclusions

Synergies parametric and kernel based-modelling

Primal and dual representations

Sparse kernel models using fixed-size method

Applications in supervised and unsupervised learning and beyond
Finite and infinite dimensional case

Beyond Mercer kernels

Software: see ERC AdG A-DATADRIVE-B website
www.esat.kuleuven.be/stadius/ADB /software.php

Learning with primal and dual model representations - Johan Suykens

42



Acknowledgements (1)

e Co-workers at ESAT-STADIUS:

M. Agudelo, C. Alaiz, C. Alzate, A. Argyriou, R. Castro, J. De Brabanter,
K. De Brabanter, L. De Lathauwer, B. De Moor, M. Espinoza, M. Fanuel,
Y. Feng, E. Frandi, B. Gauthier, D. Geebelen, H. Hang, X. Huang, L.
Houthuys, V. Jumutc, Z. Karevan, R. Langone, Y. Liu, R. Mall, S.
Mehrkanoon, M. Novak, J. Puertas, L. Shi, M. Signoretto, V. Van Belle,

J. Vandewalle, S. Van Huffel, C. Varon, X. Xi, Y. Yang, and others

e Many people for joint work, discussions, invitations, organizations

e Support from ERC AdG A-DATADRIVE-B, KU Leuven, GOA-MaNet,

OPTEC, IUAP DYSCO, FWO projects, IWT, iMinds, BIL, COST

Learning with primal and dual model representations - Johan Suykens

43



Acknowledgements (2)

KATHOLIEKE UNIVERSITEIT

/P® iMinds

CONNECT.INNOVATE.CREATE

Learning with primal and dual model

belspo

representations - Johan Suykens

FO

44



Thank you

Learning with primal and dual model representations - Johan Suykens

45



