Learning with primal and dual model representations

Johan Suykens

KU Leuven, ESAT-STADIUS
Kasteelpark Arenberg 10
B-3001 Leuven (Heverlee), Belgium
Email: johan.suykens@esat.kuleuven.be
http://www.esat.kuleuven.be/stadius/

CIMI 2015, Toulouse

Introduction and motivation

Data world

Challenges

- data-driven
- general methodology
- scalability
- need for new mathematical frameworks

Different paradigms

SVM &

Kernel methods

Convex

Optimization

Sparsity &

Compressed sensing

Different paradigms

SVM &

Kernel methods

Convex

Optimization

Sparsity &

Compressed sensing

Sparsity through regularization or loss function

Sparsity: through regularization or loss function

• through regularization: model $\hat{y} = w^T x + b$

$$\min \sum_{j} |w_j| + \gamma \sum_{i} e_i^2$$

 \Rightarrow sparse w

• through loss function: model $\hat{y} = \sum_{i} \alpha_i K(x, x_i) + b$

$$\min \ w^T w + \gamma \sum_{i} \underline{L(e_i)}$$

 \Rightarrow sparse α

Sparsity: matrices and tensors

vector x

 $\mathsf{matrix}\ X$

tensor ${\mathcal X}$

data vector x vector model: —

 $\hat{y} = w^T x$

 $\longrightarrow \qquad \text{data matrix } X \\ \longrightarrow \qquad \text{matrix model:}$

 $\hat{y} = \langle W, X \rangle$

 \longrightarrow

data tensor \mathcal{X} tensor model:

$$\hat{y} = \langle \mathcal{W}, \mathcal{X} \rangle$$

Sparsity: matrices and tensors

Learning with tensors [Signoretto, Tran Dinh, De Lathauwer, Suykens, ML 2014] Robust tensor completion [Yang, Feng, Suykens, 2014]

 $||W||_*$

 $\sum_{j} |w_{j}|$

 $\|\mathcal{W}\|_*$

Function estimation in RKHS

• Find function f such that [Wahba, 1990; Evgeniou et al., 2000]

$$\min_{f \in \mathcal{H}_K} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda ||f||_K^2$$

with $L(\cdot,\cdot)$ the loss function. $||f||_K$ is norm in RKHS \mathcal{H}_K defined by K.

• Representer theorem: for convex loss function, solution of the form

$$f(x) = \sum_{i=1}^{N} \alpha_i K(x, x_i)$$

Reproducing property $f(x) = \langle f, K_x \rangle_K$ with $K_x(\cdot) = K(x, \cdot)$

• Sparse representation by ϵ -insensitive loss [Vapnik, 1998]

Learning models from data: alternative views

- Consider model $\hat{y} = f(x; w)$, given input/output data $\{(x_i, y_i)\}_{i=1}^N$:

$$\min_{\mathbf{w}} w^{T} w + \gamma \sum_{i=1}^{N} (y_{i} - f(x_{i}; w))^{2}$$

Learning models from data: alternative views

- Consider model $\hat{y} = f(x; w)$, given input/output data $\{(x_i, y_i)\}_{i=1}^N$:

$$\min_{w} w^{T} w + \gamma \sum_{i=1}^{N} (y_{i} - f(x_{i}; w))^{2}$$

- Rewrite the problem as

$$\min_{\substack{\boldsymbol{w},\boldsymbol{e}\\\text{subject to}}} w^T w + \gamma \sum_{i=1}^N e_i^2$$
subject to $e_i = y_i - f(x_i; w), i = 1, ..., N$

- Express the solution and the model in terms of Lagrange multipliers α_i
- For a model $f(x;w)=\sum_{j=1}^h w_j\varphi_j(x)=w^T\varphi(x)$ one obtains then $\hat{f}(x)=\sum_{i=1}^N \alpha_i K(x,x_i)$ with $K(x,x_i)=\varphi(x)^T\varphi(x_i)$.

Least Squares Support Vector Machines: "core models"

Regression

$$\min_{w,b,e} w^T w + \gamma \sum_i e_i^2 \quad \text{s.t.} \quad y_i = w^T \varphi(x_i) + b + e_i, \quad \forall i$$

Classification

$$\min_{w,b,e} w^T w + \gamma \sum_{i} e_i^2 \quad \text{s.t.} \quad y_i(w^T \varphi(x_i) + b) = 1 - e_i, \quad \forall i$$

• Kernel pca (V=I), Kernel spectral clustering $(V=D^{-1})$

$$\min_{w,b,e} -w^T w + \gamma \sum_{i} v_i e_i^2 \quad \text{s.t.} \quad e_i = w^T \varphi(x_i) + b, \quad \forall i$$

Kernel canonical correlation analysis/partial least squares

$$\min_{w,v,b,d,e,r} w^T w + v^T v + \nu \sum_{i} (e_i - r_i)^2 \text{ s.t. } \begin{cases} e_i &= w^T \varphi^{(1)}(x_i) + b \\ r_i &= v^T \varphi^{(2)}(y_i) + d \end{cases}$$

[Suykens & Vandewalle, 1999; Suykens et al., 2002; Alzate & Suykens, 2010]

Probability and quantum mechanics

- Kernel pmf estimation
 - Primal:

$$\min_{w,p_i} \frac{1}{2} \langle w, w \rangle$$
 subject to $p_i = \langle w, \varphi(x_i) \rangle$, $i = 1, ..., N$ and $\sum_{i=1}^N p_i = 1$

- Dual:
$$p_i = \frac{\sum_{j=1}^{N} K(x_j, x_i)}{\sum_{i=1}^{N} \sum_{j=1}^{N} K(x_j, x_i)}$$

- ullet Quantum measurement: state vector $|\psi\rangle$, measurement operators M_i
 - Primal:

$$\min_{|w\rangle, p_i} \frac{1}{2} \langle w|w\rangle \text{ subject to } p_i = \text{Re}(\langle w|M_i\psi\rangle), i = 1, ..., N \text{ and } \sum_{i=1}^N p_i = 1$$

- Dual: $p_i = \langle \psi | M_i | \psi \rangle$ (Born rule, orthogonal projective measurement)

[Suykens, Physical Review A, 2013]

SVMs: living in two worlds ...

Primal space

Parametric

$$\hat{y} = \operatorname{sign}[w^{T}\varphi(x) + b]$$
 \hat{y}
 \hat{y}
 w_{1}
 w_{2}
 w_{1}
 w_{1}
 w_{2}
 w_{1}
 w_{2}
 w_{1}
 w_{2}
 w_{3}

Dual space

Nonparametric

$$\hat{y} = \operatorname{sign}\left[\sum_{i=1}^{\# \operatorname{sv}} \alpha_i y_i K(x, x_i) + b\right]$$

SVMs: living in two worlds ...

Primal space

Parametric

$$\hat{y} = ext{sign}[w^T arphi(x) + b]$$
 $\psi_1(x)$ $\psi_1(x)$ $\psi_{n_h}(x)$ $\psi_{n_h}(x)$ $\psi_{n_h}(x)$ $\psi_{n_h}(x)$ $\psi_{n_h}(x)$ ("Kernel trick")

Dual space

Nonnarametrio

$$\hat{y} = \operatorname{sign}\left[\sum_{i=1}^{\#_{\mathrm{SV}}} \alpha_i y_i K(x, x_i) + b\right]$$

inputs $x \in \mathbb{R}^d$, output $y \in \mathbb{R}$ training set $\{(x_i, y_i)\}_{i=1}^N$

$$(P): \quad \hat{y} = w^T x + b, \quad w \in \mathbb{R}^d$$
 Model

inputs $x \in \mathbb{R}^d$, output $y \in \mathbb{R}$ training set $\{(x_i, y_i)\}_{i=1}^N$

$$(P): \quad \hat{y} = w^T x + b, \quad w \in \mathbb{R}^d$$
 Model
$$(D): \quad \hat{y} = \sum_i \alpha_i \, x_i^T x + b, \quad \alpha \in \mathbb{R}^N$$

few inputs, many data points: $d \ll N$


```
\mathbf{primal} \; : \; w \in \mathbb{R}^d
```

dual: $\alpha \in \mathbb{R}^N$ (large kernel matrix: $N \times N$)

many inputs, few data points: $d \gg N$

primal: $w \in \mathbb{R}^d$

dual : $\alpha \in \mathbb{R}^N$ (small kernel matrix: $N \times N$)

Feature map and kernel

From linear to nonlinear model:

$$(P): \quad \hat{y} = w^T \varphi(x) + b$$
Model
$$(D): \quad \hat{y} = \sum_i \alpha_i K(x_i, x) + b$$

Mercer theorem:

$$K(x,z) = \varphi(x)^T \varphi(z)$$

Feature map $\varphi(x) = [\varphi_1(x); \varphi_2(x); ...; \varphi_h(x)]$ Kernel function K(x,z) (e.g. linear, polynomial, RBF, ...)

- Use of feature map and positive definite kernel [Cortes & Vapnik, 1995]
- Extension to infinite dimensional case:
 - LS-SVM formulation [Signoretto, De Lathauwer, Suykens, 2011]
 - HHK Transform, coherent states, wavelets [Fanuel & Suykens, 2015]

HHK transform

• Coherent states $\{|\eta_x\rangle \in \mathcal{H}\}_{x\in X}$ in

$$\min_{|w\rangle\in\mathcal{H}, e_i, b} \frac{1}{2} \langle w|w\rangle_{\mathcal{H}} + \frac{\gamma}{2} \sum_{i=1}^{N} e_i^2 \quad \text{s.t.} \quad y_i = \langle \eta_{x_i}|w\rangle_{\mathcal{H}} + b + e_i, \quad i = 1, ..., N$$

$$(P): \quad \hat{y} = \langle \eta_x | w \rangle_{\mathcal{H}} + b \quad \longrightarrow \text{transform}$$

$$\downarrow K(x,z) = \langle \eta_x | \eta_z \rangle_{\mathcal{H}}$$

$$(D): \quad \hat{y} = \sum_i \alpha_i K(x_i,x) + b$$

[Fanuel & Suykens, TR15-101, 2015]

HHK transform

• Coherent states $\{|\eta_x\rangle \in \mathcal{H}\}_{x\in X}$ in

$$\min_{|w\rangle\in\mathcal{H}, e_i, b} \frac{1}{2} \langle w|w\rangle_{\mathcal{H}} + \frac{\gamma}{2} \sum_{i=1}^{N} e_i^2 \quad \text{s.t.} \quad y_i = \langle \eta_{x_i}|w\rangle_{\mathcal{H}} + b + e_i, \quad i = 1, ..., N$$

• HHK Transform: $W_{\eta}: \mathcal{H} \to \mathcal{H}_K: |w\rangle \mapsto \langle \eta. |w\rangle_{\mathcal{H}}$

$$(P): \quad \hat{y} = \langle \eta_x | w \rangle_{\mathcal{H}} + b \qquad \mathcal{H}_K \qquad \hat{y} = \langle W_\eta \eta_x | W_\eta w \rangle_K + b$$

$$\downarrow K(x,z) = \langle \eta_x | \eta_z \rangle_{\mathcal{H}} \qquad \downarrow K(x,z) = \langle \xi_x | \xi_z \rangle_K, \ \xi_x = W_\eta \eta_x$$

$$(D): \quad \hat{y} = \sum_i \alpha_i K(x_i,x) + b \qquad \hat{y} = \sum_i \alpha_i K(x_i,x) + b$$

[Fanuel & Suykens, TR15-101, 2015]

Sparsity by fixed-size kernel method

Fixed-size method: steps

- 1. **selection of a subset** from the data
- 2. kernel matrix on the subset
- 3. eigenvalue decomposition of kernel matrix
- 4. **approximation of the feature map** based on the eigenvectors (Nyström approximation)
- 5. estimation of the model in the primal using the approximate feature map (applicable to large data sets)

[Suykens et al., 2002] (Is-svm book)

Selection of subset

- random
- quadratic Renyi entropy
- incomplete Cholesky factorization

Nyström method

- "big" kernel matrix: $\Omega_{(N,N)} \in \mathbb{R}^{N \times N}$ "small" kernel matrix: $\Omega_{(M,M)} \in \mathbb{R}^{M \times M}$ (on subset)
- ullet Eigenvalue decompositions: $\Omega_{(N,N)}\, \tilde{U} = \tilde{U}\, \tilde{\Lambda}$ and $\Omega_{(M,M)}\, \overline{U} = \overline{U}\, \overline{\Lambda}$
- Relation to eigenvalues and eigenfunctions of the integral equation

$$\int K(x, x')\phi_i(x)p(x)dx = \lambda_i\phi_i(x')$$

with

$$\hat{\lambda}_i = \frac{1}{M} \overline{\lambda}_i, \quad \hat{\phi}_i(x_k) = \sqrt{M} \, \overline{u}_{ki}, \quad \hat{\phi}_i(x') = \frac{\sqrt{M}}{\overline{\lambda}_i} \sum_{k=1}^M \overline{u}_{ki} K(x_k, x')$$

[Williams & Seeger, 2001] (Nyström method in GP)

Fixed-size method: estimation in primal

ullet For the feature map $\varphi(\cdot):\mathbb{R}^d o \mathbb{R}^h$ obtain an approximation

$$\tilde{\varphi}(\cdot): \mathbb{R}^d \to \mathbb{R}^M$$

based on the eigenvalue decomposition of the kernel matrix with $\tilde{\varphi}_i(x') = \sqrt{\hat{\lambda}_i} \, \hat{\phi}_i(x')$ (on a **subset** of size $M \ll N$).

• Estimate in **primal**:

$$\min_{\tilde{w},\tilde{b}} \frac{1}{2} \tilde{w}^T \tilde{w} + \gamma \frac{1}{2} \sum_{i=1}^{N} (y_i - \tilde{w}^T \tilde{\varphi}(x_i) - \tilde{b})^2$$

Sparse representation is obtained: $\tilde{w} \in \mathbb{R}^M$ with $M \ll N$ and $M \ll h$.

[Suykens et al., 2002; De Brabanter et al., CSDA 2010]

Fixed-size method: performance in classification

	pid	spa	mgt	adu	ftc
N	768	4601	19020	45222	581012
$N_{ m cv}$	512	3068	13000	33000	531012
$N_{ m test}$	256	1533	6020	12222	50000
d	8	57	11	14	54
FS-LSSVM (# SV)	150	200	1000	500	500
C-SVM (# SV)	290	800	7000	11085	185000
u-SVM ($#$ SV)	331	1525	7252	12205	165205
RBF FS-LSSVM	76.7(3.43)	92.5(0.67)	86.6(0.51)	85.21(0.21)	81.8(0.52)
Lin FS-LSSVM	77.6(0.78)	90.9(0.75)	77.8(0.23)	83.9(0.17)	75.61(0.35)
RBF C-SVM	75.1(3.31)	92.6(0.76)	85.6(1.46)	84.81(0.20)	81.5(no cv)
Lin C-SVM	76.1(1.76)	91.9(0.82)	77.3(0.53)	83.5(0.28)	75.24(no cv)
RBF $ u$ -SVM	75.8(3.34)	88.7(0.73)	84.2(1.42)	83.9(0.23)	81.6(no cv)
Maj. Rule	64.8(1.46)	60.6(0.58)	65.8(0.28)	83.4(0.1)	51.23(0.20)

- ullet Fixed-size (FS) LSSVM: good performance and sparsity wrt C-SVM and u-SVM
- Challenging to achieve high performance by very sparse models

[De Brabanter et al., CSDA 2010]

primal	
dual	subset selection Nyström approximation

	stage 1
primal	FS model estimation
dual	subset selection Nyström approximation

Synergy between parametric & kernel-based models [Mall & Suykens, IEEE-TNNLS 2015], reweighted ℓ_1 [Candes et al., 2008]

Synergy between parametric & kernel-based models [Mall & Suykens, IEEE-TNNLS 2015], reweighted ℓ_1 [Candes et al., 2008]

Other possible approaches with improved sparsity: SCAD [Fan & Li, 2001]; coefficient-based ℓ_q (0 $< q \le 1$) [Shi et al., 2013]; two-level ℓ_1 [Huang et al., 2014]

Kernel-based models for spectral clustering

Kernel PCA

• Primal problem: [Suykens et al., 2002]

$$\min_{w,b,e} \frac{1}{2} w^T w - \frac{1}{2} \gamma \sum_{i=1}^{N} e_i^2 \text{ s.t. } e_i = w^T \varphi(x_i) + b, \ i = 1, ..., N.$$

• Dual problem corresponds to kernel PCA [Scholkopf et al., 1998]

$$\Omega_c \alpha = \lambda \alpha$$
 with $\lambda = 1/\gamma$

with
$$\Omega_{c,ij} = (\varphi(x_i) - \hat{\mu}_{\varphi})^T (\varphi(x_j) - \hat{\mu}_{\varphi})$$
 the centered kernel matrix.

- Interpretation:
 - 1. pool of candidate components (objective function equals zero)
 - 2. select relevant components
- Robust and sparse versions [Alzate & Suykens, 2008]: by taking other loss functions

Robustness: Kernel Component Analysis

original image

corrupted image

KPCA reconstruction

KCA reconstruction

Weighted LS-SVM [Alzate & Suykens, IEEE-TNN 2008]: robustness and sparsity

Kernel Spectral Clustering (KSC): case of two clusters

• **Primal problem:** training on given data $\{x_i\}_{i=1}^N$

$$\min_{\substack{w,b,e \\ \text{subject to}}} \frac{1}{2} w^T w - \gamma \frac{1}{2} e^T V e$$
subject to $e_i = w^T \varphi(x_i) + b, \quad i = 1, ..., N$

with weighting matrix V and $\varphi(\cdot): \mathbb{R}^d \to \mathbb{R}^h$ the feature map.

• Dual:

$$VM_V\Omega\alpha=\lambda\alpha$$
 with $\lambda=1/\gamma$, $M_V=I_N-\frac{1}{1_N^TV1_N}1_N1_N^TV$ weighted centering matrix, $\Omega=[\Omega_{ij}]$ kernel matrix with $\Omega_{ij}=\varphi(x_i)^T\varphi(x_j)=K(x_i,x_j)$

• Taking $V = D^{-1}$ with degree matrix $D = \text{diag}\{d_1, ..., d_N\}$ and $d_i = \sum_{j=1}^N \Omega_{ij}$ relates to random walks algorithm.

[Alzate & Suykens, IEEE-PAMI, 2010]

Lagrangian and conditions for optimality

• Lagrangian:

$$\mathcal{L}(w, b, e; \alpha) = \frac{1}{2}w^T w - \gamma \frac{1}{2} \sum_{i=1}^{N} v_i e_i^2 + \sum_{i=1}^{N} \alpha_i (e_i - w^T \varphi(x_i) - b)$$

Conditions for optimality:

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial w} = 0 & \Rightarrow \quad w = \sum_{i} \alpha_{i} \varphi(x_{i}) \\ \frac{\partial \mathcal{L}}{\partial b} = 0 & \Rightarrow \quad \sum_{i} \alpha_{i} = 0 \\ \frac{\partial \mathcal{L}}{\partial e_{i}} = 0 & \Rightarrow \quad \alpha_{i} = \gamma v_{i} e_{i}, \ i = 1, ..., N \\ \frac{\partial \mathcal{L}}{\partial \alpha_{i}} = 0 & \Rightarrow \quad e_{i} = w^{T} \varphi(x_{i}) + b, \ i = 1, ..., N \end{cases}$$

• Eliminate w, b, e, write solution in Lagrange multipliers α_i .

Kernel spectral clustering: more clusters

• Case of k clusters: additional sets of constraints

$$\min_{w^{(l)}, e^{(l)}, b_l} \quad \frac{1}{2} \sum_{l=1}^{k-1} w^{(l)^T} w^{(l)} - \frac{1}{2} \sum_{l=1}^{k-1} \gamma_l e^{(l)^T} D^{-1} e^{(l)}$$
subject to
$$e^{(1)} = \Phi_{N \times n_h} w^{(1)} + b_1 1_N$$

$$e^{(2)} = \Phi_{N \times n_h} w^{(2)} + b_2 1_N$$

$$\vdots$$

$$e^{(k-1)} = \Phi_{N \times n_h} w^{(k-1)} + b_{k-1} 1_N$$

where
$$e^{(l)} = [e_1^{(l)}; ...; e_N^{(l)}]$$
 and $\Phi_{N \times n_h} = [\varphi(x_1)^T; ...; \varphi(x_N)^T] \in \mathbb{R}^{N \times n_h}$.

• Dual problem: $M_D\Omega\alpha^{(l)}=\lambda D\alpha^{(l)}$, l=1,...,k-1.

[Alzate & Suykens, IEEE-PAMI, 2010]

Primal and dual model representations

k clusters

k-1 sets of constraints (index l=1,...,k-1)

$$(P): \operatorname{sign}[\hat{e}_{*}^{(l)}] = \operatorname{sign}[w^{(l)}^{T}\varphi(x_{*}) + b_{l}]$$

$$\mathcal{M}$$

$$(D): \operatorname{sign}[\hat{e}_{*}^{(l)}] = \operatorname{sign}[\sum_{j} \alpha_{j}^{(l)} K(x_{*}, x_{j}) + b_{l}]$$

Advantages of kernel-based setting

- model-based approach
- out-of-sample extensions, applying model to new data
- consider training, validation and test data
 (training problem corresponds to eigenvalue decomposition problem)
- model selection procedures
- sparse representations and large scale methods

Model selection: toy example

Example: image segmentation

Hierarchical KSC

[Alzate & Suykens, 2012]

Hierarchical KSC

[Alzate & Suykens, 2012]

Kernel spectral clustering: sparse kernel models

original image

binary clustering

Incomplete Cholesky decomposition: $\Omega \simeq GG^T$ with $G \in \mathbb{R}^{N \times R}$ and $R \ll N$ Image (Berkeley image dataset): 321×481 (154,401 pixels), 175 SV

Kernel spectral clustering: sparse kernel models

original image

sparse kernel model

Incomplete Cholesky decomposition: $\Omega \simeq GG^T$ with $G \in \mathbb{R}^{N \times R}$ and $R \ll N$ Image (Berkeley image dataset): 321×481 (154,401 pixels), 175 SV Time-complexity $O(R^2N^2)$ in [Alzate & Suykens, 2008] Time-complexity $O(R^2N)$ in [Novak, Alzate, Langone, Suykens, 2014]

Incomplete Cholesky decomposition and reduced set

• For KSC problem $M_D\Omega\alpha=\lambda D\alpha$, solve the approximation

$$U^T M_D U \Lambda^2 \zeta = \lambda \zeta$$

from $\Omega \simeq GG^T$, singular value decomposition $G = U\Lambda V^T$ and $\zeta = U^T\alpha$. A smaller matrix of size $R \times R$ is obtained instead of $N \times N$.

- Pivots are used as subset $\{\tilde{x}_i\}$ for the data
- Reduced set method [Scholkopf et al., 1999]: approximation of $w = \sum_{i=1}^{N} \alpha_i \varphi(x_i)$ by $\tilde{w} = \sum_{j=1}^{M} \beta_j \varphi(\tilde{x}_j)$ in the sense

$$\min_{\beta} \|w - \tilde{w}\|_2^2$$

ullet Sparser solutions by adding ℓ_1 penalty, reweighted ℓ_1 or group Lasso.

[Alzate & Suykens, 2008, 2011; Mall & Suykens, 2014]

Incomplete Cholesky decomposition and reduced set

• For KSC problem $M_D\Omega\alpha=\lambda D\alpha$, solve the approximation

$$U^T M_D U \Lambda^2 \zeta = \lambda \zeta$$

from $\Omega \simeq GG^T$, singular value decomposition $G = U\Lambda V^T$ and $\zeta = U^T\alpha$. A smaller matrix of size $R \times R$ is obtained instead of $N \times N$.

- Pivots are used as subset $\{\tilde{x}_i\}$ for the data
- Reduced set method [Scholkopf et al., 1999]: approximation of $w = \sum_{i=1}^{N} \alpha_i \varphi(x_i)$ by $\tilde{w} = \sum_{j=1}^{M} \beta_j \varphi(\tilde{x}_j)$ in the sense

$$\min_{\beta} \|w - \tilde{w}\|_{2}^{2} + \nu \sum_{j} |\beta_{j}|$$

• Sparser solutions by adding ℓ_1 penalty, reweighted ℓ_1 or group Lasso.

[Alzate & Suykens, 2008, 2011; Mall & Suykens, 2014]

Core models + constraints

Core models + constraints

Kernel spectral clustering: adding prior knowledge

- Pair of points $x_{\dagger}, x_{\ddagger}$: c=1 must-link, c=-1 cannot-link
- Primal problem [Alzate & Suykens, IJCNN 2009]

$$\min_{w^{(l)}, e^{(l)}, b_{l}} \quad -\frac{1}{2} \sum_{l=1}^{k-1} w^{(l)^{T}} w^{(l)} + \frac{1}{2} \sum_{l=1}^{k-1} \gamma_{l} e^{(l)^{T}} D^{-1} e^{(l)}$$
subject to
$$e^{(1)} = \Phi_{N \times n_{h}} w^{(1)} + b_{1} 1_{N}$$

$$\vdots$$

$$e^{(k-1)} = \Phi_{N \times n_{h}} w^{(k-1)} + b_{k-1} 1_{N}$$

$$w^{(1)^{T}} \varphi(x_{\dagger}) = c w^{(1)^{T}} \varphi(x_{\ddagger})$$

$$\vdots$$

$$w^{(k-1)^{T}} \varphi(x_{\dagger}) = c w^{(k-1)^{T}} \varphi(x_{\ddagger})$$

• Dual problem: yields rank-one downdate of the kernel matrix

Adding prior knowledge

original image

without constraints

Adding prior knowledge

original image

with constraints

Semi-supervised learning using KSC (1)

- N unlabeled data, but additional labels on M-N data $\mathcal{X}=\{x_1,...,x_N,x_{N+1},...,x_M\}$
- Kernel spectral clustering as core model (binary case [Alzate & Suykens, WCCl 2012], multi-way/multi-class [Mehrkanoon et al., TNNLS 2015])

$$\min_{w,e,b} \frac{1}{2} w^T w - \gamma \frac{1}{2} e^T D^{-1} e + \rho \frac{1}{2} \sum_{m=N+1}^{M} (e_m - y_m)^2$$
subject to $e_i = w^T \varphi(x_i) + b, i = 1, ..., M$

Dual solution is characterized by a linear system. Suitable for clustering as well as classification.

• Other approaches in semi-supervised learning and manifold learning, e.g. [Belkin et al., 2006]

Semi-supervised learning using KSC (2)

Dataset	size	n_L/n_U	test (%)	FS semi-KSC	RD semi-KSC	Lap-SVMp
Spambase	4597	368/736	919 (20%)	0.885 ± 0.01	0.883 ± 0.01	0.880 ± 0.03
Satimage	6435	1030/1030	1287 (20%)	0.864 ± 0.006	0.831 ± 0.009	0.834 ± 0.007
Ring	7400	592/592	1480 (20%)	0.975 ± 0.005	0.974 ± 0.005	0.972 ± 0.006
Magic	19020	761/1522	3804 (20%)	0.836 ± 0.006	0.829 ± 0.006	0.827 ± 0.005
Cod-rna	331152	1325/1325	66230 (20%)	0.957 ± 0.006	0.947 ± 0.008	0.951 ± 0.001
Covertype	581012	2760/2760	29050 (5%)	0.715 ± 0.005	0.684 ± 0.008	0.697 ± 0.001
		2760/27600		0.729 ± 0.04	0.709 ± 0.05	_
		2760/82800		0.739 ± 0.04	0.716 ± 0.03	_
		2760/138000		0.742 ± 0.05	0.723 ± 0.06	_

FS semi-KSC: Fixed-size semi-supervised KSC

RD semi-KSC: other subset selection related to [Lee & Mangasarian, 2001]

Lap-SVM: Laplacian support vector machine [Belkin et al., 2006]

[Mehrkanoon & Suykens, 2014]

Semi-supervised learning using KSC (3)

original image

given a few labels

KSC

semi-supervised KSC

[Mehrkanoon, Alzate, Mall, Langone, Suykens, IEEE-TNNLS 2015], videos

SVD from LS-SVM

SVD within the LS-SVM setting (1)

• Singular Value Decomposition (SVD) of $A \in \mathbb{R}^{N \times M}$

$$A = U\Sigma V^T$$

with $U^TU = I_N$, $V^TV = I_M$, $\Sigma = \operatorname{diag}(\sigma_1, ..., \sigma_p) \in \mathbb{R}^{N \times M}$.

- Obtain two sets of data points (rows and columns): $x_i = A^T \epsilon_i$, $z_j = A \epsilon_j$ for i = 1, ..., N, j = 1, ..., M where ϵ_i, ϵ_j are standard basis vectors of dimension N and M.
- ullet Compatible feature maps: $\varphi:\mathbb{R}^M o \mathbb{R}^N$, $\psi:\mathbb{R}^N o \mathbb{R}^N$ where

$$\varphi(x_i) = C^T x_i = C^T A^T \epsilon_i
\psi(z_j) = z_j = A \epsilon_j$$

with $C \in \mathbb{R}^{M \times N}$ a compatibility matrix.

[Suykens, ACHA, 2015, in press]

SVD within the LS-SVM setting (2)

• Primal problem:

$$\min_{w,v,e,r} - w^T v + \frac{1}{2} \gamma \sum_{i=1}^N e_i^2 + \frac{1}{2} \gamma \sum_{j=1}^M r_j^2 \text{ subject to } e_i = w^T \varphi(x_i), \ i = 1, ..., N$$
$$r_j = v^T \psi(z_j), \ j = 1, ..., M$$

• From the Lagrangian and conditions for optimality one obtains:

$$\left[\varphi(x_i)^T \psi(z_j) \right] [\beta] = [\alpha] \tilde{\Lambda}$$

$$\left[\psi(z_j)^T \varphi(x_i) \right] [\alpha] = [\beta] \tilde{\Lambda}$$

- **Theorem**: If ACA = A holds, this corresponds to the shifted eigenvalue problem in Lanczos' decomposition theorem.
- Goes beyond the use of Mercer theorem; extensions to nonlinear SVDs

[Suykens, ACHA, 2015, in press]

Conclusions

- Synergies parametric and kernel based-modelling
- Primal and dual representations
- Sparse kernel models using fixed-size method
- Applications in supervised and unsupervised learning and beyond
- Finite and infinite dimensional case
- Beyond Mercer kernels

Software: see ERC AdG A-DATADRIVE-B website www.esat.kuleuven.be/stadius/ADB/software.php

Acknowledgements (1)

- Co-workers at ESAT-STADIUS:
 - M. Agudelo, C. Alaiz, C. Alzate, A. Argyriou, R. Castro, J. De Brabanter, K. De Brabanter, L. De Lathauwer, B. De Moor, M. Espinoza, M. Fanuel, Y. Feng, E. Frandi, B. Gauthier, D. Geebelen, H. Hang, X. Huang, L. Houthuys, V. Jumutc, Z. Karevan, R. Langone, Y. Liu, R. Mall, S. Mehrkanoon, M. Novak, J. Puertas, L. Shi, M. Signoretto, V. Van Belle, J. Vandewalle, S. Van Huffel, C. Varon, X. Xi, Y. Yang, and others
- Many people for joint work, discussions, invitations, organizations
- Support from ERC AdG A-DATADRIVE-B, KU Leuven, GOA-MaNet, OPTEC, IUAP DYSCO, FWO projects, IWT, iMinds, BIL, COST

Acknowledgements (2)

Thank you