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Introduction and motivation
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Challenges

• data-driven

• general methodology

• scalability

• need for new mathematical frameworks
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Different paradigms

SVM &

Kernel methods

Convex

Optimization

Sparsity &

Compressed sensing
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Sparsity through regularization or loss function
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Sparsity: through regularization or loss function

• through regularization: model ŷ = wTx+ b

min
∑

j

|wj| + γ
∑

i

e2i

⇒ sparse w

• through loss function: model ŷ =
∑

i αiK(x, xi) + b

min wTw + γ
∑

i

L(ei)

⇒ sparse α

−ε 0 +ε
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Sparsity: matrices and tensors

vector x matrix X tensor X

data vector x −→ data matrix X −→ data tensor X
vector model: −→ matrix model: −→ tensor model:
ŷ = wTx ŷ = 〈W,X〉 ŷ = 〈W,X〉

sparsity: sparsity: sparsity:
∑

j |wj| ‖W‖∗ ‖W‖∗

[Signoretto M., Tran Dinh Q., De Lathauwer L., Suykens J.A.K., ML 2014]

Robust tensor completion [Yang, Feng, Suykens, 2014]
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Sparsity: matrices and tensors

vector x matrix X tensor X

data vector x −→ data matrix X −→ data tensor X
vector model: −→ matrix model: −→ tensor model:
ŷ = wTx ŷ = 〈W,X〉 ŷ = 〈W,X〉

sparsity: sparsity: sparsity:
∑

j |wj| ‖W‖∗ ‖W‖∗

Learning with tensors [Signoretto, Tran Dinh, De Lathauwer, Suykens, ML 2014]

Robust tensor completion [Yang, Feng, Suykens, 2014]
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Function estimation in RKHS

• Find function f such that [Wahba, 1990; Evgeniou et al., 2000]

min
f∈HK

1

N

N
∑

i=1

L(yi, f(xi)) + λ‖f‖2
K

with L(·, ·) the loss function. ‖f‖K is norm in RKHS HK defined by K.

• Representer theorem: for convex loss function, solution of the form

f(x) =
N

X

i=1

αiK(x, xi)

Reproducing property f(x) = 〈f,Kx〉K with Kx(·) = K(x, ·)

• Sparse representation by ǫ-insensitive loss [Vapnik, 1998]
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Learning with primal and dual model representations
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Learning models from data: alternative views

- Consider model ŷ = f(x;w), given input/output data {(xi, yi)}N
i=1:

min
w
wTw + γ

N
∑

i=1

(yi − f(xi;w))2

- Rewrite the problem as

minw,e wTw + γ
∑N

i=1 (yi − f(xi;w))2

subject to ei = yi − f(xi;w), i = 1, ..., N

- Construct Lagrangian and take condition for optimality

- For a model f(x;w) =
∑h

j=1wjϕj(x) = wTϕ(x) one obtains then

f̂(x) =
∑N

i=1αiK(x, xi) with K(x, xi) = ϕ(x)Tϕ(xi).
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Learning models from data: alternative views

- Consider model ŷ = f(x;w), given input/output data {(xi, yi)}N
i=1:

min
w

wTw + γ

N
∑

i=1

(yi − f(xi;w))2

- Rewrite the problem as

min
w,e

wTw + γ
∑N

i=1 e
2
i

subject to ei = yi − f(xi;w), i = 1, ..., N

- Express the solution and the model in terms of Lagrange multipliers αi

- For a model f(x;w) =
∑h

j=1wjϕj(x) = wTϕ(x) one obtains then

f̂(x) =
∑N

i=1αiK(x, xi) with K(x, xi) = ϕ(x)Tϕ(xi).
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Least Squares Support Vector Machines: “core models”

• Regression

min
w,b,e

wTw + γ
∑

i

e2i s.t. yi = wTϕ(xi) + b+ ei, ∀i

• Classification

min
w,b,e

wTw + γ
∑

i

e2i s.t. yi(w
Tϕ(xi) + b) = 1 − ei, ∀i

• Kernel pca (V = I), Kernel spectral clustering (V = D−1)

min
w,b,e

−wTw + γ
∑

i

vie
2
i s.t. ei = wTϕ(xi) + b, ∀i

• Kernel canonical correlation analysis/partial least squares

min
w,v,b,d,e,r

wTw + vTv + ν
∑

i

(ei − ri)
2 s.t.

{

ei = wTϕ(1)(xi) + b
ri = vTϕ(2)(yi) + d

[Suykens & Vandewalle, 1999; Suykens et al., 2002; Alzate & Suykens, 2010]
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Probability and quantum mechanics

• Kernel pmf estimation
– Primal:

min
w,pi

1
2〈w,w〉 subject to pi = 〈w,ϕ(xi)〉, i = 1, ..., N and

∑N
i=1 pi = 1

– Dual: pi =
PN

j=1 K(xj,xi)
PN

i=1

PN
j=1 K(xj,xi)

• Quantum measurement: state vector |ψ〉, measurement operators Mi

– Primal:

min
|w〉,pi

1
2 〈w|w〉 subject to pi = Re(〈w|Miψ〉), i = 1, ..., N and

∑N
i=1 pi = 1

– Dual: pi = 〈ψ|Mi|ψ〉 (Born rule, orthogonal projective measurement)

[Suykens, Physical Review A, 2013]
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SVMs: living in two worlds ...
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Linear model: solving in primal or dual?

inputs x ∈ R
d, output y ∈ R

training set {(xi, yi)}N
i=1

(P ) : ŷ = wTx+ b, w ∈ R
d

ր
Model

ց
(D) : ŷ =

∑

i αi x
T
i x+ b, α ∈ R

N

Learning with primal and dual model representations - Johan Suykens 11



Linear model: solving in primal or dual?

inputs x ∈ R
d, output y ∈ R

training set {(xi, yi)}N
i=1
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Linear model: solving in primal or dual?

few inputs, many data points: d≪ N

primal : w ∈ R
d

dual: α ∈ R
N (large kernel matrix: N ×N)
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Linear model: solving in primal or dual?

many inputs, few data points: d≫ N

primal: w ∈ R
d

dual : α ∈ R
N (small kernel matrix: N ×N)
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Feature map and kernel

From linear to nonlinear model:

(P ) : ŷ = wTϕ(x) + b
ր

Model
ց

(D) : ŷ =
∑

i αiK(xi, x) + b

Mercer theorem:
K(x, z) = ϕ(x)Tϕ(z)

Feature map ϕ(x) = [ϕ1(x);ϕ2(x); ...;ϕh(x)]
Kernel function K(x, z) (e.g. linear, polynomial, RBF, ...)

• Use of feature map and positive definite kernel [Cortes & Vapnik, 1995]

• Extension to infinite dimensional case:

- LS-SVM formulation [Signoretto, De Lathauwer, Suykens, 2011]

- HHK Transform, coherent states, wavelets [Fanuel & Suykens, 2015]
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HHK transform

• Coherent states {|ηx〉 ∈ H}x∈X in

min
|w〉∈H,ei,b

1

2
〈w|w〉H+

γ

2

N
∑

i=1

e2i s.t. yi = 〈ηxi
|w〉H+b+ei, i = 1, ..., N

• HHK Transform: Wη : H → HK : |w〉 7→ 〈η·|w〉H

(P ) : ŷ = 〈ηx|w〉H + b → transform ŷ = 〈Wηηx|Wηw〉K + b

ր
M ↓ K(x, z) = 〈ηx|ηz〉H ↓ K(x, z) = 〈ξx|ξz〉K , ξx = Wηηx

ց
(D) : ŷ =

∑

i αiK(xi, x) + b ŷ =
∑

i αiK(xi, x) + b

[Fanuel & Suykens, TR15-101, 2015]
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Sparsity by fixed-size kernel method
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Fixed-size method: steps

1. selection of a subset from the data

2. kernel matrix on the subset

3. eigenvalue decomposition of kernel matrix

4. approximation of the feature map based on the eigenvectors
(Nyström approximation)

5. estimation of the model in the primal using the approximate feature map
(applicable to large data sets)

[Suykens et al., 2002] (ls-svm book)
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Selection of subset

• random

• quadratic Renyi entropy

• incomplete Cholesky factorization
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Nyström method

• “big” kernel matrix: Ω(N,N) ∈ R
N×N

“small” kernel matrix: Ω(M,M) ∈ R
M×M (on subset)

• Eigenvalue decompositions: Ω(N,N) Ũ = Ũ Λ̃ and Ω(M,M)U = U Λ

• Relation to eigenvalues and eigenfunctions of the integral equation

∫

K(x, x′)φi(x)p(x)dx = λiφi(x
′)

with

λ̂i =
1

M
λi, φ̂i(xk) =

√
M uki, φ̂i(x

′) =

√
M

λi

M
∑

k=1

ukiK(xk, x
′)

[Williams & Seeger, 2001] (Nyström method in GP)
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Fixed-size method: estimation in primal

• For the feature map ϕ(·) : R
d → R

h obtain an approximation

ϕ̃(·) : R
d → R

M

based on the eigenvalue decomposition of the kernel matrix with ϕ̃i(x
′) =

√

λ̂i φ̂i(x
′) (on a subset of size M ≪ N).

• Estimate in primal:

min
w̃,b̃

1

2
w̃T w̃ + γ

1

2

N
∑

i=1

(yi − w̃T ϕ̃(xi) − b̃)2

Sparse representation is obtained: w̃ ∈ R
M with M ≪ N and M ≪ h.

[Suykens et al., 2002; De Brabanter et al., CSDA 2010]
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Fixed-size method: performance in classification

pid spa mgt adu ftc

N 768 4601 19020 45222 581012

Ncv 512 3068 13000 33000 531012

Ntest 256 1533 6020 12222 50000

d 8 57 11 14 54

FS-LSSVM (# SV) 150 200 1000 500 500

C-SVM (# SV) 290 800 7000 11085 185000

ν-SVM (# SV) 331 1525 7252 12205 165205

RBF FS-LSSVM 76.7(3.43) 92.5(0.67) 86.6(0.51) 85.21(0.21) 81.8(0.52)

Lin FS-LSSVM 77.6(0.78) 90.9(0.75) 77.8(0.23) 83.9(0.17) 75.61(0.35)

RBF C-SVM 75.1(3.31) 92.6(0.76) 85.6(1.46) 84.81(0.20) 81.5(no cv)

Lin C-SVM 76.1(1.76) 91.9(0.82) 77.3(0.53) 83.5(0.28) 75.24(no cv)

RBF ν-SVM 75.8(3.34) 88.7(0.73) 84.2(1.42) 83.9(0.23) 81.6(no cv)

Maj. Rule 64.8(1.46) 60.6(0.58) 65.8(0.28) 83.4(0.1) 51.23(0.20)

• Fixed-size (FS) LSSVM: good performance and sparsity wrt C-SVM and ν-SVM

• Challenging to achieve high performance by very sparse models

[De Brabanter et al., CSDA 2010]
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Two stages of sparsity

stage 1

primal FS model estimation → reweighted l1

↑
dual subset selection

Nyström approximation

Synergy between parametric & kernel-based models
[Mall & Suykens, IEEE-TNNLS, 2015], reweighted l1 [Candes et al., 2008]

Other possible approaches with improved sparsity: SCAD [Fan & Li, 2001]; coefficient-

based lq (0 < q ≤ 1) [Shi et al., 2013]; two-level l1 [Huang et al., 2014]
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Two stages of sparsity
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primal FS model estimation → reweighted ℓ1

↑
dual subset selection

Nyström approximation

Synergy between parametric & kernel-based models
[Mall & Suykens, IEEE-TNNLS, 2015], reweighted l1 [Candes et al., 2008]

Other possible approaches with improved sparsity: SCAD [Fan & Li, 2001]; coefficient-

based ℓq (0 < q ≤ 1) [Shi et al., 2013]; two-level ℓ1 [Huang et al., 2014]
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Two stages of sparsity

stage 1 stage 2

primal FS model estimation → reweighted ℓ1

↑
dual subset selection

Nyström approximation

Synergy between parametric & kernel-based models
[Mall & Suykens, IEEE-TNNLS 2015], reweighted ℓ1 [Candes et al., 2008]

Other possible approaches with improved sparsity: SCAD [Fan & Li, 2001]; coefficient-

based lq (0 < q ≤ 1) [Shi et al., 2013]; two-level l1 [Huang et al., 2014]

Learning with primal and dual model representations - Johan Suykens 20



Two stages of sparsity

stage 1 stage 2

primal FS model estimation → reweighted ℓ1

↑
dual subset selection

Nyström approximation

Synergy between parametric & kernel-based models
[Mall & Suykens, IEEE-TNNLS 2015], reweighted ℓ1 [Candes et al., 2008]

Other possible approaches with improved sparsity: SCAD [Fan & Li, 2001]; coefficient-

based ℓq (0 < q ≤ 1) [Shi et al., 2013]; two-level ℓ1 [Huang et al., 2014]

Learning with primal and dual model representations - Johan Suykens 20



Kernel-based models for spectral clustering
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Kernel PCA

• Primal problem: [Suykens et al., 2002]

min
w,b,e

1

2
wTw − 1

2
γ

N
∑

i=1

e2i s.t. ei = wTϕ(xi) + b, i = 1, ..., N.

• Dual problem corresponds to kernel PCA [Scholkopf et al., 1998]

Ωcα = λα with λ = 1/γ

with Ωc,ij = (ϕ(xi) − µ̂ϕ)T (ϕ(xj) − µ̂ϕ) the centered kernel matrix.

• Interpretation:
1. pool of candidate components (objective function equals zero)
2. select relevant components

• Robust and sparse versions [Alzate & Suykens, 2008]: by taking other
loss functions
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Robustness: Kernel Component Analysis

original image corrupted image

KPCA reconstruction KCA reconstruction

Weighted LS-SVM [Alzate & Suykens, IEEE-TNN 2008]: robustness and sparsity
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Kernel Spectral Clustering (KSC): case of two clusters

• Primal problem: training on given data {xi}N
i=1

min
w,b,e

1

2
wTw − γ

1

2
eTV e

subject to ei = wTϕ(xi) + b, i = 1, ..., N

with weighting matrix V and ϕ(·) : R
d → R

h the feature map.

• Dual:
VMV Ωα = λα

with λ = 1/γ, MV = IN − 1
1T

N
V 1N

1N1T
NV weighted centering matrix,

Ω = [Ωij] kernel matrix with Ωij = ϕ(xi)
Tϕ(xj) = K(xi, xj)

• Taking V = D−1 with degree matrix D = diag{d1, ..., dN} and di =
∑N

j=1 Ωij relates to random walks algorithm.

[Alzate & Suykens, IEEE-PAMI, 2010]
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Lagrangian and conditions for optimality

• Lagrangian:

L(w, b, e;α) =
1

2
wTw − γ

1

2

N
∑

i=1

vie
2
i +

N
∑

i=1

αi(ei − wTϕ(xi) − b)

• Conditions for optimality:















































∂L
∂w

= 0 ⇒ w =
∑

i αiϕ(xi)

∂L
∂b

= 0 ⇒ ∑

iαi = 0

∂L
∂ei

= 0 ⇒ αi = γviei, i = 1, ..., N

∂L
∂αi

= 0 ⇒ ei = wTϕ(xi) + b, i = 1, ..., N

• Eliminate w, b, e, write solution in Lagrange multipliers αi.
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Kernel spectral clustering: more clusters

• Case of k clusters: additional sets of constraints

min
w(l),e(l),bl

1

2

k−1
∑

l=1

w(l)T

w(l) − 1

2

k−1
∑

l=1

γle
(l)T

D−1e(l)

subject to e(1) = ΦN×nh
w(1) + b11N

e(2) = ΦN×nh
w(2) + b21N

...
e(k−1) = ΦN×nh

w(k−1) + bk−11N

where e(l) = [e
(l)
1 ; ...; e

(l)
N ] and ΦN×nh

= [ϕ(x1)
T ; ...;ϕ(xN)T ] ∈ R

N×nh.

• Dual problem: MDΩα(l) = λDα(l), l = 1, ..., k − 1.

[Alzate & Suykens, IEEE-PAMI, 2010]
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Primal and dual model representations

k clusters
k − 1 sets of constraints (index l = 1, ..., k − 1)

(P ) : sign[ê
(l)
∗ ] = sign[w(l)Tϕ(x∗) + bl]

ր
M

ց
(D) : sign[ê

(l)
∗ ] = sign[

∑

j α
(l)
j K(x∗, xj) + bl]
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Advantages of kernel-based setting

• model-based approach

• out-of-sample extensions, applying model to new data

• consider training, validation and test data
(training problem corresponds to eigenvalue decomposition problem)

• model selection procedures

• sparse representations and large scale methods
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Model selection: toy example
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Example: image segmentation
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Hierarchical KSC

[Alzate & Suykens, 2012]
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Hierarchical KSC

[Alzate & Suykens, 2012]
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Kernel spectral clustering: sparse kernel models

original image binary clustering

Incomplete Cholesky decomposition: Ω ≃ GGT with G ∈ R
N×R and R ≪ N

Image (Berkeley image dataset): 321 × 481 (154, 401 pixels), 175 SV

Time-complexity O(R2N2) in [Alzate & Suykens, 2008]

Time-complexity O(R2N) in [Novak, Alzate, Langone, Suykens, 2014]
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Kernel spectral clustering: sparse kernel models

original image sparse kernel model

Incomplete Cholesky decomposition: Ω ≃ GGT with G ∈ R
N×R and R ≪ N

Image (Berkeley image dataset): 321 × 481 (154, 401 pixels), 175 SV

Time-complexity O(R2N2) in [Alzate & Suykens, 2008]

Time-complexity O(R2N) in [Novak, Alzate, Langone, Suykens, 2014]
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Incomplete Cholesky decomposition and reduced set

• For KSC problem MDΩα = λDα, solve the approximation

UTMDUΛ2ζ = λζ

from Ω ≃ GGT , singular value decomposition G = UΛV T and ζ = UTα.
A smaller matrix of size R×R is obtained instead of N ×N .

• Pivots are used as subset {x̃i} for the data

• Reduced set method [Scholkopf et al., 1999]: approximation of w =
∑N

i=1αiϕ(xi) by w̃ =
∑M

j=1 βjϕ(x̃j) in the sense

min
β

‖w − w̃‖2
2

∑

j

|βj|

• Sparser solutions by adding ℓ1 penalty, reweighted ℓ1 or group Lasso.

[Alzate & Suykens, 2008, 2011; Mall & Suykens, 2014]
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Incomplete Cholesky decomposition and reduced set

• For KSC problem MDΩα = λDα, solve the approximation

UTMDUΛ2ζ = λζ

from Ω ≃ GGT , singular value decomposition G = UΛV T and ζ = UTα.
A smaller matrix of size R×R is obtained instead of N ×N .

• Pivots are used as subset {x̃i} for the data

• Reduced set method [Scholkopf et al., 1999]: approximation of w =
∑N

i=1αiϕ(xi) by w̃ =
∑M

j=1 βjϕ(x̃j) in the sense

min
β

‖w − w̃‖2
2 + ν

∑

j

|βj|

• Sparser solutions by adding ℓ1 penalty, reweighted ℓ1 or group Lasso.

[Alzate & Suykens, 2008, 2011; Mall & Suykens, 2014]
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Core models + constraints

+Core model
additional constraints

regularization terms
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Core models + constraints

+Core model
additional constraints

model estimate

regularization terms

optimal model representation
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Kernel spectral clustering: adding prior knowledge

• Pair of points x†, x‡: c = 1 must-link, c = −1 cannot-link

• Primal problem [Alzate & Suykens, IJCNN 2009]

min
w(l),e(l),bl

−1

2

k−1
∑

l=1

w(l)T

w(l) +
1

2

k−1
∑

l=1

γle
(l)T

D−1e(l)

subject to e(1) = ΦN×nh
w(1) + b11N

...
e(k−1) = ΦN×nh

w(k−1) + bk−11N

w(1)Tϕ(x†) = cw(1)Tϕ(x‡)
...

w(k−1)Tϕ(x†) = cw(k−1)Tϕ(x‡)

• Dual problem: yields rank-one downdate of the kernel matrix
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Adding prior knowledge

original image without constraints
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Adding prior knowledge

original image with constraints
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Semi-supervised learning using KSC (1)

• N unlabeled data, but additional labels on M −N data
X = {x1, ..., xN , xN+1, ..., xM}

• Kernel spectral clustering as core model (binary case [Alzate & Suykens,
WCCI 2012], multi-way/multi-class [Mehrkanoon et al., TNNLS 2015])

min
w,e,b

1

2
wTw − γ

1

2
eTD−1e+ρ

1

2

M
∑

m=N+1

(em − ym)2

subject to ei = wTϕ(xi) + b, i = 1, ...,M

Dual solution is characterized by a linear system. Suitable for clustering
as well as classification.

• Other approaches in semi-supervised learning and manifold learning, e.g.
[Belkin et al., 2006]
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Semi-supervised learning using KSC (2)

Dataset size nL/nU test (%) FS semi-KSC RD semi-KSC Lap-SVMp

Spambase 4597 368/736 919 (20%) 0.885 ± 0.01 0.883 ± 0.01 0.880 ± 0.03

Satimage 6435 1030/1030 1287 (20%) 0.864 ± 0.006 0.831 ± 0.009 0.834 ± 0.007

Ring 7400 592/592 1480 (20%) 0.975 ± 0.005 0.974 ± 0.005 0.972 ± 0.006

Magic 19020 761/1522 3804 (20%) 0.836 ± 0.006 0.829 ± 0.006 0.827 ± 0.005

Cod-rna 331152 1325/1325 66230 (20%) 0.957 ± 0.006 0.947 ± 0.008 0.951 ± 0.001

Covertype 581012 2760/2760 29050 (5%) 0.715 ± 0.005 0.684 ± 0.008 0.697 ± 0.001

2760/27600 0.729 ± 0.04 0.709 ± 0.05 −

2760/82800 0.739 ± 0.04 0.716 ± 0.03 −

2760/138000 0.742 ± 0.05 0.723 ± 0.06 −

FS semi-KSC: Fixed-size semi-supervised KSC
RD semi-KSC: other subset selection related to [Lee & Mangasarian, 2001]
Lap-SVM: Laplacian support vector machine [Belkin et al., 2006]

[Mehrkanoon & Suykens, 2014]
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Semi-supervised learning using KSC (3)

original image KSC

given a few labels semi-supervised KSC

[Mehrkanoon, Alzate, Mall, Langone, Suykens, IEEE-TNNLS 2015], videos
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SVD from LS-SVM
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SVD within the LS-SVM setting (1)

• Singular Value Decomposition (SVD) of A ∈ R
N×M

A = UΣV T

with UTU = IN , V TV = IM , Σ = diag(σ1, ..., σp) ∈ R
N×M .

• Obtain two sets of data points (rows and columns): xi = AT ǫi, zj = Aεj

for i = 1, ..., N , j = 1, ...,M where ǫi, εj are standard basis vectors of
dimension N and M .

• Compatible feature maps: ϕ : R
M → R

N , ψ : R
N → R

N where

ϕ(xi) = CTxi = CTAT ǫi
ψ(zj) = zj = Aεj

with C ∈ R
M×N a compatibility matrix.

[Suykens, ACHA, 2015, in press]
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SVD within the LS-SVM setting (2)

• Primal problem:

min
w,v,e,r

− wTv + 1
2γ

∑N
i=1 e

2
i + 1

2γ
∑M

j=1 r
2
j subject to ei = wTϕ(xi), i = 1, ..., N

rj = vTψ(zj), j = 1, ...,M

• From the Lagrangian and conditions for optimality one obtains:

[

ϕ(xi)
T
ψ(zj)

]

[β] = [α]Λ̃
[

ψ(zj)
Tϕ(xi)

]

[α] = [β]Λ̃

• Theorem: If ACA = A holds, this corresponds to the shifted eigenvalue
problem in Lanczos’ decomposition theorem.

• Goes beyond the use of Mercer theorem; extensions to nonlinear SVDs

[Suykens, ACHA, 2015, in press]
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Conclusions

• Synergies parametric and kernel based-modelling

• Primal and dual representations

• Sparse kernel models using fixed-size method

• Applications in supervised and unsupervised learning and beyond

• Finite and infinite dimensional case

• Beyond Mercer kernels

Software: see ERC AdG A-DATADRIVE-B website
www.esat.kuleuven.be/stadius/ADB/software.php
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