Abstract—In this paper we introduce the concept of an optimal pairing, which by definition can be computed using only \(\log_2 r/\varphi(k) \) basic Miller iterations, with \(r \) the order of the groups involved and \(k \) the embedding degree. We describe an algorithm to construct optimal ate pairings on all parametrized families of pairing friendly elliptic curves. Finally, we conjecture that any non-degenerate pairing on an elliptic curve without efficiently computable endomorphisms different from powers of Frobenius requires at least \(\log_2 r/\varphi(k) \) basic Miller iterations.

Keywords: ate pairing, elliptic curves, pairing based cryptography, Tate pairing

I. INTRODUCTION

Ever since the inception of pairing based cryptography, there has been a huge interest in developing fast algorithms to compute bilinear pairings. A bilinear pairing (or simply pairing) is a map of the form

\[e : \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T \]

where \(\mathbb{G}_1, \mathbb{G}_2 \) are additive groups and \(\mathbb{G}_T \) is a multiplicative group. Bilinearity means that the map is linear in each component. We only consider pairings between groups of large prime order \(r \), which are non-degenerate, i.e. for which there exists \(P \in \mathbb{G}_1 \) and \(Q \in \mathbb{G}_2 \) such that \(e(P, Q) \neq 1 \). Note that due to bilinearity, there is essentially only one pairing. Indeed, every pairing is completely determined by its value on one set of generators of \(\mathbb{G}_1, \mathbb{G}_2 \): let \(\mathbb{G}_1 = \langle P \rangle \), \(\mathbb{G}_2 = \langle Q \rangle \) and \(z = e(P, Q) \), then by bilinearity \(e(aP, bQ) = z^{ab} \). If a second pairing is specified by \(P', Q', z' \) and \(P' = aP \), \(Q' = bQ \), \(z' = z^\gamma \), then clearly \(e' = e^{\gamma/\alpha \beta} \).

All fast algorithms to compute the Weil and Tate pairings on (hyper)elliptic curves are based on Miller’s algorithm [22], [23]. Since then a large number of papers [3], [13], [7], [26], [27], [2], [17], [15], [21], [28], [20], [29], [16] have incrementally improved efficiency, interspersed with the occasional jumps caused by fundamentally new approaches. One line of research is focused on shortening the loop in Miller’s algorithm, which was initiated by Duursma-Lee [7] and extended by Barreto et al. [2] to supersingular abelian varieties using the \(\eta \) approach. The ate pairing introduced in [17] for elliptic curves and in [15] for hyperelliptic curves generalizes this to all ordinary curves. More recently, several variants of the ate pairing were introduced thereby further reducing the loop length in Miller’s algorithm, such as the optimized ate pairing [21], the ate pairing [28] and finally the R-ate pairing [20].

So far, all variants of the ate pairing have a Miller loop of length at least \(\log_2 r/\varphi(k) \), with \(k \) the embedding degree.

In this paper, we introduce the notion of optimal pairings, which by definition attain this lower bound. Furthermore, we describe an algorithm to automatically construct optimal ate pairings on parametrized families of pairing friendly elliptic curves. This algorithm also explains why the bound \(\log_2 r/\varphi(k) \) is a natural lower bound and we conjecture that any non-degenerate pairing on an elliptic curve without extra efficiently computable endomorphisms different from Frobenius requires at least \(\log_2 r/\varphi(k) \) basic Miller operations, thereby justifying the term “optimal pairing”. In fact, in [16] Hess develops a very elegant mathematical framework that encompasses all known pairing functions, including this work, and proves the conjecture in this framework. Furthermore, it seems likely that Hess’ framework contains all pairing functions.

Since pairings on elliptic curves seem more useful than pairings on hyperelliptic curves [14], we limit the exposition to elliptic curves. It should be clear however that all results in this paper easily generalize to Jacobians of curves.

The remainder of this paper is organized as follows: Section 2 recalls the necessary background on pairings, including all variants of the ate pairing. Section 3 formally defines the notion of optimal pairing and describes an algorithm to automatically construct such pairings for families of pairing friendly elliptic curves. Section 4 applies the algorithm to an extensive list of families of pairing friendly curves and exhibits in each case an optimal ate pairing. Finally, Section 5 concludes the paper.

II. BACKGROUND ON PAIRINGS

In this section, we briefly recall the definition of the Tate pairing, all variants of the ate pairing and Miller’s algorithm to compute them. The necessary mathematical background can be found in [1] and an excellent overview on pairings is [12].

A. Tate Pairing

Let \(\mathbb{F}_q \) be a finite field with \(q = p^n \) elements where \(p \) is prime and let \(E \) be an elliptic curve defined over \(\mathbb{F}_q \). The point at infinity is denoted by \(\mathcal{O} \). Consider a large prime \(r \) such that \(r \mid \#(\mathbb{F}_q) \) and denote the embedding degree by \(k \), i.e. the smallest positive integer such that \(r \mid q^k - 1 \). Note that this implies that \(r \mid \Phi_k(q) \) with \(\Phi_k(x) \in \mathbb{Z}[x] \) the \(k \)-th cyclotomic polynomial. The embedding degree \(k \) is chosen in this way so as to ensure that both eigenspaces of Frobenius are \(\mathbb{F}_{q^k} \)-rational. For \(k = 1 \), there is only one eigenspace, and the full \(r \)-torsion \(E[r] \) is either \(\mathbb{F}_q \)-rational or \(\mathbb{F}_{q^r} \)-rational [19]. For \(k > 1 \), the full \(r \)-torsion \(E[r] \) is defined over the field \(\mathbb{F}_{q^k} \), i.e. \(E[r] \subset E(\mathbb{F}_{q^k}) \).

For every \(P \in E(\mathbb{F}_{q^k}) \) and integer \(s \), let \(f_{s,p} \) be an \(\mathbb{F}_{q^r} \)-
rational function with divisor

\[(f_{s, p}) = s(P) - ([s]P) - (s - 1)O.\]

Such function \(f_{s, p}\) is called a Miller function and is determined uniquely up to multiplication by non-zero elements of \(\mathbb{F}_q^*\).

Let \(P \in E(\mathbb{F}_q)[r]\) and \(Q \in E(\mathbb{F}_q)[r]\), and consider the divisor \(D = (Q + R) - (R)\) with \(R\) a random point in \(E(\mathbb{F}_q)\) such that \(D\) is co-prime with \((-D)\). Then the Tate pairing \([10]\) is a well-defined, non-degenerate, bilinear pairing

\[\langle \cdot, \cdot \rangle : E(\mathbb{F}_q)[r] \times E(\mathbb{F}_q)[r]/E(\mathbb{F}_q) \rightarrow \mathbb{F}_q^*/(\mathbb{F}_q^*)^r\]

\[(P, Q) \mapsto \langle P, Q \rangle_r = f_{r, p}(D).\]

The image of this pairing is only defined up to a coset, however for protocols we will require a unique element of \(\mathbb{F}_q^*\). Hence to obtain a unique representative, one defines the reduced Tate pairing as

\[t(P, Q) = \langle P, Q \rangle_r^{(q^k - 1)/r} = f_{r, p}(D)^{(q^k - 1)/r} \in \mu_r,\]

with \(\mu_r\) the \(r\)-th roots of unity.

If the function \(f_{r, p}\) in the definition is normalized, i.e. \((u_0^q f_{r, p})(O) = 1\) for some \(\mathbb{F}_q\)-rational uniformizer \(u_0\) at \(O\), then one can ignore working with the divisor \(D\) and simply work with the point \(Q\), i.e. the reduced Tate pairing is

\[t(P, Q) = f_{r, p}(Q)^{(q^k - 1)/r}.\]

Remark. In the remainder of the paper we will assume that all Miller functions are normalized.

B. Ate Pairing

The ate pairing \([17], [15]\) and its variations \([21], [28], [20]\) are simply optimized versions of the Tate pairing when restricted to the eigenspaces of Frobenius. Denote with \(\pi_q\) the Frobenius endomorphism, i.e. \(\pi_q : E \rightarrow E : (x, y) \mapsto (x^q, y^q)\) and define \(\mathbb{G}_1 = E[r] \cap \ker(\pi_q - [1]) = E(\mathbb{F}_q)[r]\) and \(\mathbb{G}_2 = E[r] \cap \ker(\pi_q - q)\).

A somewhat non-standard way to derive the ate pairing is the following: consider a fixed power \(m \in \mathbb{Z}\) of the Tate pairing on \(\mathbb{G}_2 \times \mathbb{G}_1\) (so with the arguments swapped)

\[t(Q, P)^m = f_{r, Q}(P)^{m(q^k - 1)/r} = f_{r, Q}(P)^{m(q^k - 1)/r},\]

where the last step follows from \(f_{mr, Q} = f_{r, Q} \cdot f_{m, [r]}Q\) and \([r]Q = O\). In fact, it is easy to see that this holds in general, i.e. for all \(a, b \in \mathbb{Z}\) we can take

\[f_{ab, Q} = f_{a, Q}^b \cdot f_{b, [a]Q},\]

where as always the Miller functions are assumed normalized. Since the Tate pairing is non-degenerate, the right hand side of (3) also defines a non-degenerate pairing for any \(m \in \mathbb{Z}\) with \(r \nmid m\). The main idea is then to find a nice multiple of \(r\) such that the evaluation \(f_{mr, Q}(P)\) can be written as a power of the evaluation of a simpler function \(f_{\lambda, Q}(P)\). This can be achieved by exploiting the fact that \(q\)-th powering corresponds to multiplication by \(q\) on \(\mathbb{G}_2\) and leaves \(\mathbb{G}_1\) invariant. Finally, multiplication by \(q\) on \(\mathbb{G}_2\) is the same as multiplication by any \(\lambda\) such that \(\lambda \equiv q \mod r\).

Lemma 1: Let \(\lambda \equiv q \mod r\) and \(m = (\lambda^k - 1)/r\), then the reduced ate pairing

\[a_\lambda : \mathbb{G}_2 \times \mathbb{G}_1 \rightarrow \mu_r : (Q, P) \mapsto f_{\lambda, Q}(P)^{(q^k - 1)/r},\]

defines a bilinear pairing which is non-degenerate for \(r \nmid m\).

Proof: Note that \(r \mid (\lambda^k - 1)\), since \(r \mid (q^k - 1)\). Let \(m = (\lambda^k - 1)/r\), then

\[t(Q, P)^m = f_{mr, Q}(P)^{(q^k - 1)/r} = f_{\lambda^k - 1, Q}(P)^{(q^k - 1)/r} = f_{\lambda, Q}(P)^{(q^k - 1)/r},\]

where the first equality follows from (3) and the last equality follows from \(f_{\lambda^k - 1, Q} = f_{r, Q}\) using \([\lambda^k - 1]Q = O\). Repeated application of (4) and using \(|\lambda|Q = [q]Q\) gives

\[f_{\lambda, Q} = f_{\lambda, Q}^k \cdot f_{\lambda^k - 2, Q} \cdots f_{\lambda^k, [q - 1]}Q.\]

Since the curve \(E\) is defined over \(\mathbb{F}_q\) and \(\pi_q(Q) = [q]Q\), it is easy to see that for any \(s \in \mathbb{Z}\),

\[f_{s, [q]}Q(P) = f_{s, Q}(P)^q,\]

so we finally obtain

\[f_{\lambda, Q}(P) = f_{\lambda, Q}(P)^{\sum_{i=1}^{k-1} \lambda^{k-1-i}q^i}.\]

Since the left hand side defines a non-degenerate pairing for \(r \nmid m\), we conclude that \(a_\lambda\) also defines a non-degenerate pairing for \(r \nmid m\).

Note that the action of \(a_\lambda\) simply corresponds to a fixed power of the reduced Tate pairing.

A similar derivation as in Lemma 1 also shows that when \(k \mid \#\text{Aut}(E)\) the twisted ate pairing

\[a_\lambda^t : \mathbb{G}_2 \times \mathbb{G}_2 \rightarrow \mu_r : (P, Q) \mapsto f_{\lambda, P}(Q)^{(q^k - 1)/r},\]

defines a bilinear pairing that is non-degenerate for \(r \nmid m\).

By choosing different multiples of \(r\), other variants \([21], [28]\) can be obtained such as setting \(\lambda \equiv q^i \mod r\) for any \(i \in \mathbb{Z}\), since then \(r \mid (\lambda^k)^{i/k} \cdot \gcd(i, k) - 1\). Furthermore, by multiplying or dividing several variants of the ate pairing, one obtains new pairings as shown in \([20]\) and \([29]\). All of these variants have a common goal, namely to make the constant \(\lambda\) as small as possible since this determines the length of the loop in Miller’s algorithm.

The main idea in Section 3 will be to consider other multiples of \(r\), in particular where the base-q expansion of \(mr\) has very small digits.

C. Miller’s Algorithm

To compute the function \(f_{s, p}\) for \(s > 0\), one can use Miller’s algorithm \([22], [23]\), which is a double-and-add approach based on the following observation

\[f_{m+n, P} = f_{m, P} \cdot f_{n, P} \frac{[m]P}[n]P \cdot \frac{[m+n]P}{[m]P},\]

(6)
where $l_{[m|P|n|P]}$ is the equation of the curve through $[m|P]$ and $[n|P]$ (or the tangent line when $[m|P] = [n|P]$) and $v_{[m+n|P]}$ the equation of the vertical line through $[m+n|P]$.

Algorithm 1 Miller’s algorithm for elliptic curves

Input: $s \in \mathbb{N}, P, Q \in E[r]$ with $P \neq Q$.

Output: $f_{s,P}(Q)$.

1. Write $s = \sum_{j=0}^{L} s_j 2^j$, with $s_j \in \{0, 1\}$ and $s_L = 1$.
2. $T \leftarrow P$; $f \leftarrow 1$.
3. for j from $L - 1$ downto 0 do
4. \quad $f \leftarrow f^2 \cdot \ell_T(Q)/v_T(Q)$.
6. if $s_j = 1$ then
7. \quad $f \leftarrow f \cdot \ell_T(P)/v_T(P)$.
8. \quad $T \leftarrow T \oplus P$.
9. end if.
10. end for.
11. return f.

For $s < 0$ it suffices to remark that $(f_{s,P}) = -(f_{-s,P}) - (v_{[s|P]}$ with $v_{[s|P]}$ the vertical line through $[s|P]$, so we can take $f_{s,P} = 1/(f_{-s,P}v_{[s|P]}$.

Definition 2: One execution of the main loop in Algorithm 1 is called a basic Miller iteration, this is, all operations occurring in steps 4 to 9.

In particular, if we ignore the denominators (i.e. when denominator elimination applies), there should only be one F_{q^k}-squaring and one F_{q^k}-multiplication, one curve doubling and the corresponding evaluation of the line functions and for the if-statement, one F_{q^k}-multiplication, one curve addition and the corresponding evaluation of the line functions.

III. Optimal Pairings

A. Definition

It is not difficult to see that for the ate pairings with Miller function $f_{\lambda,Q}$ where $\lambda_i \equiv q^i \bmod r$, we have

$$
\frac{r}{\Phi_{k/d}(\lambda_i)} \quad \text{where } d = \gcd(i, k),
$$

which implies that the minimal value for λ_i is roughly $r^{1/\varphi(k)/d}$. For $\gcd(i, k) = 1$ we therefore obtain the smallest lower bound of roughly $r^{1/\varphi(k)}$. This bound is attained for several complete families of elliptic curves such as cyclotomic families [9]. Motivated by these bounds, we give the following definition.

Definition 3: Let $e : G_1 \times G_2 \to G_T$ be a non-degenerate, bilinear pairing with $|G_1| = |G_2| = |G_T| = r$, where the field of definition of G_T is F_{q^k}, then $e(\cdot, \cdot)$ is called an optimal pairing if it can be computed in $\log_2 r/\varphi(k) + \varepsilon(k)$ basic Miller iterations, with $\varepsilon(k) \leq \log_2 k$.

Note that the above definition does not specify that the pairing e should be computed as the evaluation of one Miller function $f_{\lambda,Q}$ as is the case for the ate pairings, but also allows for products of $f_{\lambda,Q}$ or other combinations as long as all $f_{\lambda_i,Q}$ can be computed in $\log_2 r/\varphi(k) + \varepsilon(k)$ basic Miller iterations. As will be shown in the next section, the bound $\log_2 r/\varphi(k)$ is a natural one.

The central idea for loop reduction in Miller’s algorithm it to exploit efficiently computable endomorphisms, such as powers of the Frobenius endomorphism π_i^q for $i = 0, \ldots, k - 1$ by decomposing a multiple of r as a sum of these endomorphisms. However, since $\Phi_k(q) \equiv 0 \bmod r$, higher powers of π_i^q for $j \geq \varphi(k)$ act on G_2 as a linear combination with small coefficients of the $\varphi(k)$ endomorphisms π_i^q for $i = 0, \ldots, \varphi(k) - 1$. Therefore, only the latter ones should be considered as “independent”, since the size of the coefficients of a linear combination of π_i^q for $j \geq \varphi(k)$ will only very slightly increase by reduction modulo Φ_k. Since this is essentially the best one can obtain for powers of Frobenius, we make the following conjecture, which also explains the terminology “optimal pairing”.

Optimality Conjecture: any non-degenerate pairing on an elliptic curve without efficiently computable endomorphisms different from powers of Frobenius, requires at least $O(\log_2 r/\varphi(k))$ basic Miller iterations, where the O-constant only depends on k.

In [16], Hess proved the above conjecture for a very general class of pairing functions encompassing all known pairing functions, including this work. Hess also obtained similar results for the twisted ate pairing and the Weil pairing.

More generally, we can also consider other efficiently computable endomorphisms, such as automorphisms of E. Let $n = \text{lcm}(k, \#\text{Aut}(E))$, and assume $\alpha \in \text{Aut}(E)$, then it is possible (see Section 4 of [16]) to construct a pairing of the form

$$
\left(\prod_{j=0}^{\#\text{Aut}(E)-1} f_{s,Q}(\alpha^j(P))\right)^{(q^k-1)/r}
$$

where $v = sq^{-1}$ and s is an n-th root of unity, which can be of size $\log_2 r/\varphi(n)$. However, it seems currently impossible to extract the action of the automorphism from the function evaluation. So although there is only one function $f_{s,Q}$, it still needs to be evaluated at $\#\text{Aut}(E)$ points and thus requires strictly more than $\log_2 r/\varphi(n)$ basic Miller operations, which would be the ideal case.

B. More Ate Pairings

The basic idea to construct optimal ate pairings is to exploit equation (3) by finding a multiple $\lambda = mr$ that has base-q expansion $\lambda = \sum_i c_i q^i$ with small coefficients. Any such expansion gives rise to a bilinear pairing as shown in the following theorem.

Theorem 4: Let $\lambda = mr$ with $r \nmid m$ and write $\lambda = \sum_{i=0}^{t} c_i q^i$ then $a_{[\alpha, \ldots, \alpha]} : G_2 \times G_1 \to \mu_r$ defined as

$$
(Q, P) \mapsto \left(\prod_{i=0}^{t} f_{c_i,Q}(P) \cdot \prod_{i=0}^{t-1} \frac{l_{[s_{i+1}]Q,c_i q^i}(P)}{v_{[s_i]Q}(P)}\right)^{(q^k-1)/r}
$$

with $s_i = \sum_{j=i}^{t} c_j q^j$ defines a bilinear pairing. Further-
more, if
\[mkq^{k-1} \neq ((q^k - 1)/r) \cdot \sum_{i=0}^{l} ic_i q^{i-1} \mod r, \quad (8)\]
then the pairing is non-degenerate.

Proof: Consider the \(m\)-th power of the reduced Tate pairing on \(G_2 \times G_1\), then
\[t(Q, P)^m = f_{\lambda, Q}(P)^{(q^k - 1)/r} = f_{\sum_{i=0}^{l} ic_i q^{i-1}, Q}(P)^{(q^k - 1)/r}.\]

Using (6) the last function (without the final powering) can be rewritten as
\[\prod_{i=0}^{l-1} f_{c_i q^{i-1}, Q}(P) \frac{l_{[s+i+1]Q, [c_i q^{i+1}]Q}(P)}{v_{[s+i]Q}(P)} .\]

By (4) and (5) the factors \(f_{c_i q^{i-1}, Q}(P)\) can be split as
\[f_{c_i q^{i-1}, Q}(P) = f_{c_i q^{i-1}, Q}(P) f_{c_i, [q^i]Q}(P) = f_{c_i, [Q]} Q(P) f_{c_i, Q}(P)\]
so we finally obtain
\[t(Q, P)^m = \left(\prod_{i=0}^{l-1} f_{c_i q^{i-1}, Q}(P) \right)^{(q^k - 1)/r} \cdot a_{[0, ..., c_i]}(Q, P).\]

Note that the factor between brackets is a product of powers of ate pairings and thus bilinear, which shows that \(a_{[c_0, ..., c_i]}\) is also bilinear. Furthermore, \(a_{[c_0, ..., c_i]}\) will be non-degenerate unless \(t(Q, P)^m\) equals the pairing between brackets. This can be computed explicitly by expressing both pairings as a power of the reduced ate pairing \(a_q\). For the left hand side we obtain
\[t(Q, P)^m = a_q(Q, P)^{mkq^{k-1}((q^k - 1)/r) - 1} \mod r.\]

And for the pairing in between brackets
\[\left(\prod_{i=0}^{l-1} f_{c_i q^{i-1}, Q}(P) \right)^{(q^k - 1)/r} = a_{\sum_{i=0}^{l} ic_i q^{i-1}}.\]

In conclusion, if (8) holds then, \(a_{[c_0, ..., c_i]}\) is non-degenerate. \(\square\)

Note that for \(k\) even, denominator elimination applies, so we can ignore all vertical lines \(v_{[s+i]Q}(P)\). Furthermore, the computation of the lines \(l_{[s+i+1]Q, [c_i q^{i+1}]Q}\) one should replace all multiplications by powers of \(q\) by Frobenius actions.

Since \(r \mid \Phi_k(q)\), it would be tempting to take \(\lambda = \Phi_k(q)\), for which the corresponding \(c_l\) will be extremely small and thus \(a_{[c_0, ..., c_l]}\) extremely efficient. Unfortunately, this choice of \(\lambda\) will always result in a degenerate pairing, which can be seen as a corollary of the following trivial lemma.

Lemma 5: For all \(k \in \mathbb{N}_0\) we have
\[kx^{k-1} \equiv (x^k - 1)/\Phi_k(x) \cdot \Phi_k(x) \mod \Phi_k(x).\]

Proof: Write \((x^k - 1) = ((x^k - 1)/\Phi_k(x)) \cdot \Phi_k(x)\) and take derivatives of both sides by applying the Leibniz rule to the right hand side. \(\square\)

Corollary 6: For \(\lambda = \Phi_k(q) = \sum_{i=0}^{\varphi(k)} c_i q^i\) the pairing \(a_{[c_0, ..., c_l]}\) is degenerate.

Proof: Since \(m = \Phi_k(q)/r\), we can rewrite the non-degeneracy condition in Theorem 4 as
\[mkq^{k-1} \neq m(q^k - 1)/\Phi_k(q)\Phi_k(q) \mod r,\]
which is false by the above lemma. \(\square\)

More generally, if we take \(\lambda\) as the evaluation of a polynomial multiple of \(\Phi_k(x)\), then the corresponding pairing will also be degenerate. To see this, let \(z(x) \in \mathbb{Z}[x]\) be any polynomial with integer coefficients and define \(\lambda = z(q)\Phi_k(q) = \sum_{i=0}^{d} c_i q^i\). Recall that \(m = \lambda/r\), so in particular \(m = z(q)\Phi_k(q)/r\). Substituting this in the non-degeneracy condition and eliminating the factor \(\Phi_k(q)/r\), then gives
\[z(q)kq^{k-1} \neq (q^k - 1)/\Phi_k(q) \cdot \Phi_k(q)z(q) \mod r.\]
So again we can use Lemma 5 to conclude that the pairing will be degenerate.

C. An Algorithm for Optimal Ate Pairings

To avoid degenerate pairings and since modulo \(r\) the powers of \(q^i\) are related via \(\Phi_k(q) = 0 \mod r\), which is a relation with tiny coefficients, it suffices to consider the powers \(q^i\) for \(i = 0, \ldots, \varphi(k) - 1\) in Theorem 4.

It is clear that a necessary (but not sufficient) condition to obtain an optimal pairing is that the \(c_i\) in Theorem 4 should not be larger in absolute value than \(r^{1/\varphi(k)}\). Such small \(c_i\) can be obtained in general by finding short vectors in the following \(\varphi(k)\)-dimensional lattice (spanned by the rows)
\[L := \begin{pmatrix} r & 0 & 0 & \cdots & 0 \\ -q & 1 & 0 & \cdots & 0 \\ -q^2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -q^{\varphi(k)-1} & 0 & 0 & \cdots & 1 \end{pmatrix} .\]

Note that since \(k\) is small, finding the shortest vector in the lattice \(L\) is an easy task using enumeration as described in [25] and implemented as the ShortestVectors() function in Magma [5].

The volume of \(L\) is easily seen to be \(r\), so by Minkowski’s theorem [24], there exists a short vector \(V \in L\) with \(\|V\|_\infty \leq r^{1/\varphi(k)}\), where \(\|V\|_\infty = \max_i |v_i|\). This proves that the first condition can be satisfied for all pairing friendly elliptic curves. However, finding small \(c_i\) does not directly imply that the corresponding pairing \(a_{[c_0, ..., c_l]}\) is optimal. This conclusion is only valid in a parallel computing model, but clearly not in a serial one.

The first approach to partially solve this problem is to look for short vectors with a minimal number of coordinates of size \(r^{1/\varphi(k)}\). This can easily be achieved by listing all short vectors with norm smaller than \(\delta \lambda_1(L)\) where
\(\lambda_1(L) \) is the length of the shortest vector in the lattice and \(\delta \) a small integer. Note that this approach automatically finds the best linear combination by exhibiting the minimal number of “essential” \(c_i \)'s.

If the above approach results in a vector with only one \(c_i \) of size \(r^{1/\varphi(k)} \) we clearly obtain an optimal pairing. However, if there is more than one such \(c_i \), it not clear how to compute the Miller functions using only \(\log_2 r/\varphi(k) \) basic Miller iterations. If the \(c_i \) are completely independent, then the only optimization possible would be to use some form of multi-exponentiation, and we would thus fail to attain the optimal number of basic Miller operations.

For pairing friendly elliptic curves in parametrized families however, the above approach can be executed on the polynomial representations of \(r(x) \) and \(q^i(x) \mod r(x) \), thereby leading to short vectors where the \(c_i(x) \) are automatically related since they are polynomial expressions in the same variable \(x \). Exploiting this explicit relation often gives us an optimal pairing, since all \(f_{c_i(x),Q} \) in (7) will typically follow directly from \(f_{x,Q} \).

The above reasoning shows that the bound \(r^{1/\varphi(k)} \) can be achieved, but it provides no information on how good this bound is, i.e. how short the shortest vector is compared to Minkowski’s bound. The following theorem resolves this problem.

Theorem 7: The shortest vector \(V \) in \(L \) satisfies

\[
\|V\|_2 \geq \frac{r^{1/\varphi(k)}}{\|\Phi_k\|_2} \quad \text{and} \quad \|V\|_\infty \geq \frac{r^{1/\varphi(k)}}{(\varphi(k)+1)\|\Phi_k\|_\infty}.
\]

(10)

Proof: To obtain a lower bound on the length of the shortest vector, we consider the following equivalent problem. Let \(\xi_k \) denote a primitive \(k \)-th root of unity and consider the cyclotomic number field \(K = \mathbb{Q}[\xi_k] \cong \mathbb{Q}[x]/\Phi_k(x) \). For the prime \(r \), we have \(\Phi_k(q) \equiv 0 \mod r \), so \(\Phi_k(x) \) splits completely modulo \(r \) (since \(K \) is Galois). The ring of integers of \(K \) is \(\mathbb{Z}[\xi_k] \) and the ideal \(r\mathbb{Z}[\xi_k] \) factors as a product of \(\varphi(k) \) different prime ideals \(p_i = (r, \xi_k - s_i) \) with \(s_i \) the roots of \(\Phi_k(x) \) modulo \(r \). Consider the prime ideal \(\mathfrak{p} = (r, \xi_k - q) \), then we have a one-to-one correspondence between vectors in \(L \) and elements in \(\mathfrak{p} \) by

\[\Lambda : L \to \mathfrak{p} : V = [v_0, \ldots, v_{\varphi(k)-1}] \mapsto \sum_{i=0}^{\varphi(k)-1} v_i \xi_k^i. \]

To give a lower bound on the norm of \(V \), we first bound the (number field) norm \(N_{K/Q} \) of an element in \(\mathfrak{p} \). Recall that the norm of elements in \(\mathfrak{p} \) is always divisible by \(r \) (the norm of \(\mathfrak{p} \)) and thus we obtain

\[r \leq N_{K/Q}(\sum_{i=0}^{\varphi(k)-1} v_i \xi_k^i) = |\text{Res}(V(x), \Phi_k(x))|. \]

By bounding the size of the resultant using Hadamard’s inequality we finally obtain

\[r \leq \|V\|_2^{\varphi(k)} \|\Phi_k\|_2^{\varphi(k)-1} \leq (\varphi(k)+1)^{\varphi(k)} \|V\|_\infty^{\varphi(k)} \|\Phi_k\|_\infty^{\varphi(k)-1} \]

which is precisely the bound given in (10). This shows that the shortest vector in the lattice can never be much shorter than Minkowski’s bound.

We can now combine Theorems 4 and 7 to provide further evidence for the optimality conjecture. Let \(\lambda = mr \) with \(r \nmid m \) and write \(\lambda = \sum_{i=0}^t c_i q_i \) as in Theorem 4. Let \(\lambda(x) = \sum_{i=0}^t c_i x^i \) and consider the division by \(\Phi_k(x) \), i.e.

\[\lambda(x) = \alpha(x) \cdot \Phi_k(x) + \beta(x), \]

with \(\deg(\beta(x)) < \varphi(k) \). Since \(r \nmid \lambda \) and \(r \mid \Phi_k(q) \), we conclude that \(r \mid \beta(q) \) and thus that the coefficient vector of \(\beta(x) \), denoted by \(\beta \), is contained in \(L \). There are now two possibilities for \(\beta(x) \): either \(\beta(x) = 0 \) and we obtain a degenerate pairing as shown before, or \(\beta(x) \neq 0 \) but then \(\|\beta\|_2 \geq r^{1/\varphi(k)}/\|\Phi_k\|_2 \) since \(\beta \in L \). However, this implies that not all original coefficients \(c_i \) can be very small either, since reduction modulo \(\Phi_k(x) \) only causes a small increase in coefficient size. This shows once more that considering more general expressions \(\lambda = \sum_{i=0}^t c_i q_i \) for \(l \geq \varphi(k) \) will not lead to substantially more efficient pairings than with the above algorithm.

IV. Examples

In this section we apply the algorithm of the previous section to several polynomial families obtaining optimal pairings for all of them. An excellent overview of pairing friendly curves is given in [9].

The parametrized shortest vectors were found by choosing a specific member of the family, calling the ShortestVectors() function in Magma [5] on the lattice \(L \) given in (9) and finally, interpolating the result. Other good short vectors (e.g. for the infinity norm) can be obtained in a similar way using the ShortVectors() function that returns all vectors of norm in a prescribed range.

BN-curves

The family of BN-curves [4] has \(k = 12 \) and is given by the following parametrization:

\[p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1 \]
\[r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1. \]

The shortest vectors in the lattice \(L \) for the Euclidean norm are given by

\[V_1(x) = [x + 1, x, x, -2x] \quad V_2(x) = [2x, x + 1, -x, x]. \]

Since there is such an easy relation between the \(c_i(x) \), we already obtain an optimal pairing, since all \(f_{c_i(x),Q} \) follow immediately from \(f_{x,Q} \). Alternatively, we can look for short vectors with minimal number of coefficients of size \(x \) and obtain

\[W(x) = [6x + 2, 1, -1, 1], \]

which gives another possibility for an optimal pairing. Since \(f_{1,Q} = 1 \) and \(f_{-1,Q} = 1/f_{1,Q}Q \) (which disappears after final exponentiation), the pairing \(a_W \) can be computed as

\[a_W = (f_{6x+2,Q} \cdot M)^{(q^k-1)/r}, \]
where \(M = l_{Q_3-Q_2}(P) \cdot l_{-Q_2+Q_3,Q_1}(P) \cdot l_{Q_1+Q_2} \) and \(Q_i = Q_i^d \) for \(i = 1, 2, 3 \). The above function is very similar to example 4.6 given in the \(R \)-ate pairing paper [20].

Freeman curves The family of Freeman curves [8] has \(k = 10 \) and is given by the following parametrization:

\[
\begin{align*}
p(x) &= 25x^4 + 25x^3 + 10x + 3 \\
r(x) &= 25x^4 + 25x^3 + 15x^2 + 5x + 1.
\end{align*}
\]

The shortest vector in the lattice \(L \) for the Euclidean norm is given by

\[
V = [x + 1, x, -x, -x],
\]

so again we obtain an optimal pairing since it suffices to compute \(f_{x,Q} \). Listing all short vectors gives the following alternative: \(W = [1, 1, -1, -5x - 1] \). This last vector is very similar to example 4.5 given in the \(R \)-ate pairing paper [20].

Supersingular elliptic curves with \(k = 3 \) The following family represents supersingular curves with embedding degree \(k = 3 \) over \(\mathbb{F}_q = \mathbb{F}_{p^2} \):

\[
q(x) = (3x - 1)^2 \quad r(x) = 9x^2 - 3x + 1.
\]

The shortest vector is given by \(V = [1, -3x + 1] \), which is already optimal. A slightly better choice is \(W = [3x, 1] \).

Supersingular elliptic curves with \(k = 6 \) These curves are necessarily defined over \(\mathbb{F}_{3^m} \) for some \(m \) and for odd \(m \) we have \(t = \pm \sqrt{37} \). Popular values for \(m \) are \(m = 97, 163, 193, 239, 353 \). If \(r(x) = 3x^2 + 1 - 3(x+1)^2/2 \), then the shortest vector in \(L \) is given by \(V = [3(x-1)^2/2, 3(x-1)^2/2 - 1] \) and another nice choice is \(W = [3(x+1)^2/2, -1] \). Note that this last vector corresponds to the \(\eta_T \)-pairing described in [2].

Cyclotomic family with \(k = 10 \) In [6], the authors describe the family parametrized by

\[
\begin{align*}
p(x) &= 1/4 \left(x^{12} - x^{10} + x^8 - 5x^6 + 5x^4 - 4x^2 + 4 \right) \\
r(x) &= \Phi_{20}(x),
\end{align*}
\]

which has embedding degree \(k = 10 \). Note that this is the first example where the degree of the polynomial \(r(x) \) does not equal \(\varphi(k) \), so we expect to find \(c_i(x) \) of degree 2. The shortest vector in \(L \) is given by \(V = [x^2 - 1, 1, -1, 1] \) and another nice short vector is given by \(W = [1, -x^2, 0, 0] \).

Cyclotomic family with \(k = 18 \) In [18], the authors describe the family parametrized by

\[
\begin{align*}
p(x) &= 1/21 \left(x^8 + 5x^7 + 7x^6 + 37x^5 + 188x^4 + 259x^3 \\
&\quad \quad + 343x^2 + 1763x + 2401 \right) \\
r(x) &= 1/343 \left(x^6 + 37x^3 + 343 \right),
\end{align*}
\]

which for values \(x \equiv 14 \mod 42 \) parametrizes elliptic curves with embedding degree 18. The shortest vectors in the lattice \(L \) are given by three shifts of

\[
V = [2z, 1, 0, z, 0, 0]
\]

where \(z = x/7 \). Another nice short vector is given by

\[
W = [1, 0, x, 2, 0, 0].
\]

Supersingular Genus 2 Curves with \(k = 12 \) To illustrate that the algorithm works equally well for hyperelliptic curves, we consider the family of curves introduced in [11]:

\[
C_d : y^2 + y = x^5 + x^3 + d \quad d \in \{0, 1\},
\]

over \(\mathbb{F}_{2^m} \), with \(m \) co-prime to 6. These curves are supersingular and have embedding degree \(k = 12 \). The order of the Jacobian \(J_C \) is given by the following table taken from [11].

<table>
<thead>
<tr>
<th>(C_d)</th>
<th>(#J_{C_d}(\mathbb{F}_{2^m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^{4m} + (-1)^d 2(3m+1)/2 + 2^m + (-1)^d 2(m+1)/2 + 1)</td>
<td>(2^{4m} - (-1)^d 2(3m+1)/2 + 2^m - (-1)^d 2(m+1)/2 + 1)</td>
</tr>
</tbody>
</table>

where the first row holds for \(m = 1, 7, 17, 23 \mod 24 \) and the second for \(m = 5, 11, 13, 19 \mod 24 \). For \(m = 239 \) and \(m = 313 \) we obtain a prime order Jacobian for \(d = 1 \). Since both cases correspond to the first line of the table, we assume that \(r(m) = 2^{2m} - 2(3m+1)/2 + 2^m - 2(m+1)/2 + 1 \). The shortest vector in the lattice \(L \) is given by

\[
V = [2^{(m-1)/2}, -1, 0, -2^{(m-1)/2} + 1].
\]

However, a better short vector is given by

\[
W = [2^{(m+1)/2}, -1, -1, 1],
\]

which clearly gives an optimal pairing. Note that this pairing is different from the \(\eta_T \)-pairing given in [2].

V. Conclusion

In this paper we have introduced the concept of optimal pairings, which can be computed using log \(r/\varphi(k) \) basic Miller iterations. We described a fully automatic procedure to construct optimal ate pairings on parametrized families of pairing friendly elliptic curves by exploiting the Frobenius endomorphism. Finally, we conjectured that any non-degenerate pairing on an elliptic curve without efficiently computable endomorphisms different from powers of Frobenius requires at least \(\log_2 r/\varphi(k) \) basic Miller iterations and provided compelling evidence for this conjecture.

Acknowledgments

The author wishes to thank Steven Galbraith, Mike Scott, Florian Hess and an anonymous reviewer for providing useful suggestions and corrections.

References
