
Automatic Search of Linear Trails in ARX

with applications to SPECK and Chaskey

Yunwen Liu1,2, Qingju Wang1,3?, and Vincent Rijmen1

1 KU Leuven, ESAT/COSIC and iMinds, Belgium
2 Depart. Science, National University of Defence Technology, China

3 Depart. Computer Science & Engineering, Shanghai Jiao Tong University, China

Abstract. In this paper, we study linear cryptanalysis of the ARX
structure by means of automatic search. To evaluate the security of ARX
designs against linear cryptanalysis, it is crucial to find (round-reduced)
linear trails with maximum correlation. We model the problem of find-
ing optimal linear trails by the boolean satisfiability problem (SAT),
translate the propagation of masks through ARX operations into bit-
wise expressions and constraints, and then solve the problem using a
SAT solver. We apply the method to find optimal linear trails for round-
reduced versions of the block cipher SPECK and the MAC algorithm
Chaskey. For SPECK with block size 32/48/64/96/128, we can find op-
timal linear trails for 22/11/13/9/9 rounds respectively, which largely
improves previous results, especially on larger versions. A 3-round opti-
mal linear trail of Chaskey is presented for the first time as far as we
know. In addition, our method can be used to enumerate the trails in
a linear hull, and we present two linear hulls with the distributions of
trails for round-reduced SPECK32. Our work provides designers with
more accurate evaluation against linear cryptanalysis on ARX designs,
especially for primitives with large block sizes and many rounds.

Keywords: Linear cryptanalysis, ARX structure, Boolean satisfiability
problem

1 Introduction

Many symmetric key primitives are proposed with the ARX design strategy
which only uses three operations: Additions (�), Rotations (≪) and XORs
(⊕). These operations are very simple and efficient in software implementation,
but interactively provide non-linearity. The ARX structure can be found in a
large number of symmetric key designs, including hash functions BLAKE [2]
and Skein [9], which are two of the five SHA-3 finalists, stream ciphers such
as Salsa20 [5] and ChaCha [4], block ciphers such as TEA [27], XTEA [18],
HIGHT [12] and SPECK [3], and MAC algorithm Chaskey [16]. Even though the
ARX structure receives a considerable amount of attention due to its elegance

? Corresponding author

and efficiency, it remains a difficult problem to evaluate its security margin
against known attacking techniques.

Differential cryptanalysis [6] and linear cryptanalysis [15] are two main tech-
niques used in the analysis of symmetric primitives, including ARX designs.
Differential characteristics (resp. linear trails) with optimal probability (resp.
correlation) can lead to efficient attacks with complexity better than the brute
force searching. Hence the resistance against differential cryptanalysis and linear
cryptanalysis is a crucial feature to consider for both designers and attackers.
Among the methods and algorithms proposed in finding good differential char-
acteristics and linear trails, automatic searching is a popular and efficient way.
Several automatic toolkits dedicated to the searching of differential characteris-
tics in ARX are proposed in the literature [7, 14]. Comparing to the significant
efforts which have been dedicated to the automatic search of differential charac-
teristics, the searching tool of linear trails in ARX designs fell behind. The first
paper on this topic as far as we know is presented by Yao et al. [28], where an
algorithm based on branch and bound is used to find optimal (round-reduced)
linear trails in SPECK32, and short linear trails of larger versions of SPECK.

Our motivation is to model the problem of searching optimal linear trails in
an ARX structure as a boolean satisfiability problem [24]. The boolean satisfi-
ability problem is widely used to determine whether the boolean variables in a
given set of boolean conditions have valid assignments such that the conditions
evaluate to TRUE. Specifically, in order to construct linear trails with nonzero
correlation, the idea is to explore the bit-level conditions on the bits of the masks
when passing through every operation of an ARX structure, render them into
boolean satisfiability language, and call solvers to obtain valid linear trails with
certain correlations. Our work can be applied to general ARX designs and has
good performance in finding linear trails with best correlation for round-reduced
primitives. Therefore it could provide a rigorous security evaluation for some
ARX primitives against linear cryptanalysis.

Table 1. The number of covered rounds in finding optimal linear trails for SPECK
family and Chaskey

Cipher #covered rounds #covered rounds #total rounds

[28] this paper

SPECK32 22 22 22

SPECK48 7 11 22/23

SPECK64 5 13 26/27

SPECK96 4 9 28/29

SPECK128 4 9 32/33/34

Chaskey - 3 8

In this paper, our method is applied to the linear cryptanalysis of round-
reduced SPECK family and Chaskey. Table 1 gives an overview of the number

of rounds for which optimal linear trails are found in SPECK and Chaskey.
Note that there is no previous research on finding optimal linear trails in round-
reduced Chaskey.

This paper is organised as follows. In Section 2, we recall linear cryptanalysis
and the boolean satisfiability problem. We study the propagation of bits in masks
through operations of the ARX structure and transform them using boolean
satisfiability language such that they can be solved automatically in Section 3.
In Section 4, we apply the method to block cipher SPECK and MAC algorithm
Chaskey, and find linear hulls for round-reduced SPECK32. Finally, we conclude
in Section 5.

2 Preliminaries

We denote an n-bit boolean vector by x = (xn−1, · · · , x1, x0), where x0 is the
least significant bit. For two n-bit boolean vectors x and y, the inner product
is x · y =

⊕n−1
i=0 xiyi. The partial order 4 is defined by x 4 y ⇔ xi ≤ yi,∀i ∈

{0, · · · , n− 1}. The characteristic function 1x4y is defined as

1x4y =

{
1, if x 4 y,
0, otherwise.

Logical operations OR, AND, NOT, XOR are referred to as ∨,∧,¬,⊕, respec-
tively. All linear masks are hexadecimal, and we omit the 0x symbol.

2.1 Linear Cryptanalysis

Linear cryptanalysis investigates linear relations among the parities of plaintext,
ciphertext and the secret key. Let f : F2n → F2m be a vectorial boolean function.
Assume that masks for input x and output f(x) are Γin and Γout. The correlation
of the linear approximation is defined as

C(Γin, Γout) = 2 · Pr(Γin · x⊕ Γout · f(x) = 0)− 1.

Equivalently, the correlation can also be written as a Walsh transformation,

C(Γin, Γout) = 2−n
∑

x∈GF(2n)

(−1)Γin·x⊕Γout·f(x).

Let g = fr−1◦· · ·◦f1◦f0 be an iterated permutation which is the composition
of r round functions fi. Linear approximations (γi, γi+1) of a single round fi can
be concatenated into a linear trail (γ0, γ1, · · · , γr) of g.

Lemma 1 ([8]). Let (γ0, γ1, · · · , γr) be a linear trail of an iterated permutation.
Then the correlation of the linear trail can be calculated as

C(γ0, γr) =

r−1∏
i=0

C(γi, γi+1)

o ↵

�

�

n �

�k

Fig. 1. Round function of SPECK

We call a linear trail over a (round-reduced) cipher with maximum correlation
amplitude an optimal linear trail.

A linear approximation (Γin, Γout) of a block cipher is called a linear hull [19],
which contains all linear trails with input mask Γin and Γout. The potential
(averaged linear probability over the key space K) of a linear hull is defined as

ALP (Γin, Γout) =
1

|K|
∑
k∈K

C(Γin, Γout)
2,

and gives the expected value of the data complexity of a linear attack.

2.2 Description of SPECK and Chaskey

The lightweight block cipher SPECK family was designed by the NSA in 2013.
The block sizes are defined as 2n with n ∈ {16, 24, 32, 48, 64}, and key size as
mn with m ∈ {2, 3, 4} depending on n. The instances corresponding to a block
size 2n and key size mn are denoted by SPECK2n/mn. Since we do not explore
the key schedule in this paper, the instances of SPECK will simply be referred
to as SPECK2n. The round function of SPECK with inputs x and y, a round
key k is defined as:

Fk(x, y) = (fk(x, y), fk(x, y)⊕ (y≪ β))

where fk(·, ·) is defined as fk(x, y) = ((x≫ α)�y)⊕k, the rotation offset (α, β)
is (7, 2) for SPECK32, and (8, 3) for the larger instances. One round of SPECK
is depicted in Fig. 1. For more details, we refer to the design [3].

Chaskey is a permutation-based MAC algorithm presented by Mouha et al.
in 2014. The underlying permutation is an Even-Mansour block cipher with the
ARX structure. The block size is 128-bits, which is separated into four 32-bit
words. The design of Chaskey is inspired by Siphash [1], and has a structure

�

� �

�

�

�

�

�
n 5 n 8

n 16

n 16

n 7 n 13

Fig. 2. Round function of Chaskey

similar to the block cipher Threefish [9]. The total number of rounds is 8, and
there are four modular addition operations and some rotation operations in each
round. The round function of the Chaskey permutation is showed in Figure 2.

2.3 Boolean Satisfiability Problem

The boolean satisfiability problem is often called SAT. It considers whether
there is a valid assignment to boolean variables satisfying a given set of boolean
clauses. A Boolean clause consists of boolean variables (called literals), operators
AND, OR, NOT, and parentheses. For example, the clause x AND (NOT y) is
satisfiable since x = TRUE, y = FALSE is a valid assignment.

The SAT problem is NP-complete. However for most practical situations, the
solutions can be found in reasonable time. There are a large number of heuristic
SAT solvers, and all of them accept DIMACS CNF (Conjunctive Normal Form)
files as the standard input format. In CNF format, all clauses are literals with
logical operation OR and NOT, while the clauses are concatenated by AND. The
output is either satisfiable or unsatisfiable, when satisfiable, the solver can also
return a valid assignment to all literals. More specifically, SAT solvers will start
searching with an initial assignment, then calculate the number of conflicting
clauses, based on which the search tree of the SAT solver decides the next step
of searching to eliminate possible conflicts until a valid or no solution is found. It
is believed that, for cryptographic problems, the time for unsatisfiable decision

is much longer than that of satisfiable, because the search is roughly brute-force
before returning the decision of unsatisfiable [23].

In some applications, we also consider arithmetic operations, for instance,
the arithmetic sum of boolean variables, which leads to the satisfiability mod-
ulo theory (SMT) problem. SMT has certain similarity with the 0-1 integer
programming problem or mixed integer linear programming (MILP), while the
underlying ideas to solve them differ significantly. For the MILP problem, linear
programming solvers first regard the problem as a general linear programming
problem in real numbers, then by Branch and Cut, they carefully rule out illegal
branches and then limit the solution to 0-1 integers. SMT solvers try to trans-
late the problem to SAT, then solve it within a binary field. Due to the different
methodologies of solvers, the performances depend heavily on the background
and structure of the underlying problem.

3 Translating Clauses for Modular Addition

The behaviours of masks through linear operations are easy to describe, since
the correlation is either zero or ±1. For example, with input masks Γa, Γb and
output mask Γc, the condition for being a linear approximation of XOR with
nonzero correlation is Γa = Γb = Γc. The condition for being a nontrivial linear
approximation of three-fork branching is Γa ⊕ Γb ⊕ Γc = 0, and the conditions
for rotational circular shift is the equality on each corresponding bit of masks.

However for the nonlinear operation modular addition, it is necessary to have
a better understanding on the nature of addition modulo 2n.

3.1 Propagation of Masks Through Modular Addition

The milestone works on linear correlation of modular addition are by Wallén
et al. [20, 26]. They propose a recursive method to calculate the correlation of
a linear approximation in addition modulo 2n efficiently by an automaton. The
only drawback of the recursive automaton is that it is very difficult to translate
the expression into bit-level linear relations in masks, i.e. every bit is depen-
dent on all previous bits, which leads to a huge number of complex constraints.
Therefore, even though there are several papers discussing the heuristic search
methods of differentials, no previous result is on finding linear trails in ARX
ciphers with SAT theory.

In order to avoid the recursive expression, an explicit result on calculating the
correlation of linear approximations in modular addition is proven by Schulte-
Geers [21]. Despite the recursive property of the carry, modular addition is CCZ-
equivalent to a vectorial quadratic boolean function. A more natural formula to
calculate the correlation in addition modulo 2n is given in Proposition 1.

Proposition 1 ([21]). Let z be an n-bit vector satisfying z⊕(z � 1)⊕((u⊕v⊕
w)� 1) = 0, zn−1 = 0, where u is the output mask, v, w are the input masks in

a linear approximation of addition modulo 2n. Then the correlation of the linear
approximation is given by

cor(u, v, w) = 1u⊕v4z1u⊕w4z(−1)(u⊕w)·(u⊕v)2−|z|.

Comparing to a recursive algorithm, the Hamming weight of z determines
the amplitude of the correlation directly, while each bit of z can be explicitly
calculated from input and output masks. Next, we will mainly focus on the
absolute value of the correlation.

From Proposition 1, to obtain a valid linear approximation, the input masks
v, w and output mask u through addition modulo 2n need to follow the con-
straints below.

zn−1 = 0,

zn−2 = un−1 ⊕ vn−1 ⊕ wn−1,
zj = zj+1 ⊕ uj+1 ⊕ vj+1 ⊕ wj+1,

zi ≥ ui ⊕ vi,
zi ≥ ui ⊕ wi,

(1)

where 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 3.

3.2 From Linear Relations Towards SATisfiability

When considering problems in cryptanalysis, XOR is one of the most common
operations. If we translate XOR clauses into CNF, a sentence a⊕ b becomes two
clauses (¬a ∨ ¬b) ∧ (a ∨ b). In general, the XOR of n boolean variables will give
2n−1 clauses in CNF format. Even if the expressions are logically equivalent, the
underlying structure of the XOR equation system is missing in terms of the CNF
format. A system of XOR equations is in fact a linear equation system on GF(2),
therefore, it can be solved by Gaussian elimination in time O(n3), where n is the
number of variables. In many circumstances, Gaussian elimination is much more
efficient than translating XOR into operations ∨ and ∧. One SAT solver called
Cryptominisat4 [23] is specially designed to be compatible with XOR operations
and solve the XOR equation system by Gaussian elimination.

The remaining constraints in Eq. (1) are inequalities. Consider the inequality
in boolean variables, z ≥ a⊕b. It is equivalent to if a⊕b, then z, which is logically
consistent with (¬a ∨ b ∨ z) ∧ (a ∨ ¬b ∨ z).

Recall that in order to find good linear trails with large correlation values, we
need to minimize the Hamming weight of z. By the piling-up lemma, the sum of
z in every round

∑
i,r z

r
i is the objective function to be minimized. Addition over

integers is an unnatural operation in SAT language, which is not easy to describe
with only OR and AND. In SAT/SMT theory, Constraints like objective function∑
i xi ≤ k, where k ≥ 1, are called cardinality constraints, which belongs to an

even larger class called Pseudo Boolean constraints (PB-constraints). There are
two directions to handle the cardinality constraints: one is to develop new PB-
solvers dedicated to cardinality constraints, the other one is to convert cardinality
constraints into CNF format, which is what we adopt in this paper.

o 7

�

n 2

�

ar
i br

i

Fig. 3. Notation of masks in round function of SPECK32

One plain method is enumerating all the possible combinations of no more
than k out of n variables being true , i.e. the conjunction of

(
n
k+1

)
clauses∧

i1,...,ik+1
(¬xi1 ∨ · · · ∨ ¬xik+1

). However it is not applicable when n, k are large.
Throughout the literature, a large number of methods to encode the cardinality
constraints are presented. The basic idea is to add new variables to reduce the
number of constraints. Since it is a tradeoff between the number of new variables
needed and the number of clauses, while the sizes of variables and clauses both
have a significant influence on the efficiency of solving, it is critical to find a
good encoding method. In this paper, we use sequential encoding method [22],
as shown in Eq. (2). For

∑
i xi ≤ k, new dummy variables {ui,j}1≤i≤n−1,1≤j≤k

are introduced to return contradiction when the cardinality is larger than k.
(¬x1 ∨ u1,1) ∧ (¬u1,j),
(¬xi ∨ ui,1) ∧ (¬ui−1,1 ∨ ui,1) ∧ (¬xi ∨ ¬ui−1,j−1 ∨ ui,j)

∧ (¬ui−1,j ∨ ui,j) ∧ (¬xi ∨ ¬ui−1,k),

¬xn ∨ ¬un−1,k,

(2)

where 1 < j ≤ k, 1 < i < n. The sequential encoding of cardinality constraints
is one of the best methods, with relatively small amount of additional variables
and a great reduction of clauses.

When k = 0, all variables are zero, which can be translated to n clauses as
¬xi, 1 ≤ i ≤ n.

4 Applications

4.1 Application to the SPECK Family

For simplicity, we take SPECK32 as an illustration. Figure 3 shows the notation
of the masks in round r. From Eq.(1), we can derive the constraints on linear

approximation of SPECK32 in round r as

zr15 = 0,

zr14 = ar6 ⊕ cr15 ⊕ dr15,
zrj = zrj+1 ⊕ arj+8 ⊕ crj+1 ⊕ drj+1,

zri ≥ ari+7 ⊕ dri ,
zri ≥ cri ⊕ dri ,
dri = ar+1

i ⊕ br+1
i ,

cri = bri ⊕ br+1
i+2 ,

(3)

where 0 ≤ i ≤ 15, 0 ≤ j ≤ 13, and
∑
r,i z

r
i is to be minimized.

Since usually the time for unsatisfiable decision is much longer than that
for satisfiable, we follow Algorithm 1 below to find linear trails with optimal
correlation, which ensures that the most time-consuming part unsatisfiable only
appears once during the search.

Algorithm 1 Find optimal linear trail

Input: An optimal linear trail L with correlation 2−` of an r round-reduced cipher
Output: The correlation of the optimal linear trail in r + 1 round-reduced cipher

1: Append a 1-round trail at the end of L to extend it into a r + 1 round valid linear
trail L′ with correlation 2−`′

2: while the problem is satisfiable with
∑

r,i z
r
i ≤ `′ do

3: `′ ← `′ − 1
return 2−(`′+1)

Table 2 gives an overview of the correlation of optimal linear trails in round-
reduced SPECK ciphers.1 We confirm all the correlations of optimal linear trails
in [28]. Moreover, our method covers significantly more rounds in larger versions
of SPECK: 11/13/9/9 rounds comparing to 7/5/4/4 rounds in previous paper
[28] for SPECK48/64/96/128.

We also show examples of linear trails with best correlation for round-reduced
SPECKs in Table 3. Sometimes without further constraints, input and output
masks may have very high Hamming weight. By setting cardinality constraints
on the Hamming weights of the masks, we can obtain trails with input and output
masks of the lowest Hamming weight under a given correlation and number of
rounds, an example is the linear trail of 11-round SPECK32 in Table 3.

1 Our experiments for searching optimal linear trails are performed on a PC with 8
Intel R© CoreTM i7 clocked at 3.40GHz. In order to speed up the searching for linear
hulls by utilising the parallel mode in Cryptominisat4, we run the program on a
cruncher with 40 Intel R© XeonTM E5-2687W v3 clocked at 3.1GHz.

Table 2. Correlation of best linear trail in SPECK family.

R SPECK32 R SPECK32 R SPECK48 SPECK64 SPECK96 SPECK128

1 1 12 2−20 1 1 1 1 1

2 1 13 2−22 2 1 1 1 1

3 2−1 14 2−24 3 2−1 2−1 2−1 2−1

4 2−3 15 2−26 4 2−3 2−3 2−3 2−3

5 2−5 16 2−28 5 2−6 2−6 2−6 2−6

6 2−7 17 2−30 6 2−8 2−9 2−9 2−9

7 2−9 18 2−34 7 2−12 2−13 2−13 2−13

8 2−12 19 2−36 8 2−15 2−17 2−18 2−18

9 2−14 20 2−38 9 2−19 2−19 2−22 2−22

10 2−17 21 2−40 10 2−22 2−21

11 2−19 22 2−42 11 2−25 2−24

12 2−27

13 2−30

Table 3. Linear trail with best correlation in reduced-round SPECK.

R SPECK32 SPECK48 SPECK64

1 4000 00b0 800121 158021 00101800 00001812

2 0000 00c0 018100 200101 00001000 00000010

3 0300 0300 000100 000001 00000018 00000000

4 0c1e 0818 000001 000000 d8000000 c0000000

5 f000 d010 098000 080000 04100006 04800006

6 4683 4743 406100 406800 0026d030 0420c030

7 00a0 0629 00024b 00420a 01070101 21073781

8 78a0 18a1 001040 5e1042 01b00100 00318601

9 0090 6021 9082c0 f082d0 01800001 0181b000

10 6080 4081 000018 80d09b 01000000 00018000

11 0080 0001 de84dc c684dc 00010000 00000000

12 0001 0000 00000d00 00000c00

13 00006065 00006068

R SPECK96 SPECK128

1 000001800120 140000018021 0000000001800120 1400000000018021

2 000000018100 200000000101 0000000000018100 2000000000000101

3 000000000100 000000000001 0000000000000100 0000000000000001

4 000000000001 000000000000 0000000000000001 0000000000000000

5 098000000000 080000000000 0d00000000000000 0c00000000000000

6 404000000000 404800000000 6040000000000000 604c000000000000

7 000000000002 004000000002 0000000000000003 0060000000000003

8 180000000010 1a0000000010 1800000000000018 1b00000000000018

9 009000000080 108000000080 00900000000000c0 18800000000000c0

10 440458000404 840480000404 0000000004045e06 c404800000000606

11

4.2 Application to Chaskey

The designers of Chaskey did not give a security evaluation against linear crypt-
analysis in their paper. Using our method, we are able to find the correlation
of the best linear trail for the round-reduced Chaskey permutation, as shown in
Table 4. Table 5 is an example trail for 3-round Chaskey. Notations a, b, c, d are
the masks on each 32-bit branch.

Table 4. Correlation of optimal linear trails in round-reduced Chaskey.

R 1 2 3 4

Best cor. 2−1 2−2 2−9 -

Table 5. A linear trail with optimal correlation in 3-round Chaskey.

R a b c d

1 00000020 00000000 0001800d 08018189

2 00000000 00000000 00010000 00010000

3 00800000 00000000 00000081 00000000

4 0260c080 18208006 01010260 18208000

4.3 Enumerating Linear Trails in a Linear Hull

For most SAT solvers, if the problem is satisfiable, they can print all the solu-
tions. However, due to the additional variables introduced by encoding methods
in generating the CNF files, the solvers may output duplicated solutions which
represent the same trail, as also observed by Kölbl et al. in [13]. To avoid inac-
curacy, we generate the solutions one by one:

Step 1: Generate the CNF file for the problem, ask the solver to give one solution s̄
if it exists.

Step 2: Append a new clause to the current CNF file in order to rule out s̄.

Step 3: Ask solver to give a solution, repeat step 2 until the solver returns unsatis-
fiable.

In Table 6, we give the best linear hulls found and their corresponding dis-
tribution of trails for 9-round, 10-round SPECK32, where ALP is the estimated
averaged linear probability. The experimental average ALP with 128 random
keys for the above linear hulls are 2−28.9 and 2−31.1 respectively.

Table 6. The Distribution of linear trails in best found 9-/10-round SPECK32 linear
hull.

Cor.
9-round*

Cor.
10-round†

#trails #trails

2−14 0 2−17 1

2−15 1 2−18 1

2−16 0 2−19 6

2−17 3 2−20 16

2−18 2 2−21 81

2−19 21 2−22 344

2−20 69 2−23 1298

2−21 346 2−24 4873

2−22 1196 2−25 17781

2−23 4461 2−26 ≥60480
2−24 15241 2−27 ≥23951
2−25 48397 2−28 ≥11272
2−26 2−29 ≥3789
2−27 2−30 ≥5883
2−28 2−31 ≥48951

ALP 2−29.1 ALP ≥ 2−32.1

*
input masks: 0010, 1400, output masks: 0b00, 0800

†
input masks: 0000, 0306, output masks: 0b00, 0800

4.4 Comparison of Solvers

In some previous papers on automatic searching of differential and linear trails,
e.g. [17, 25], the searching idea is modelled as a MILP problem and solved by
CPLEX. To compare the performance of CPLEX and Cryptominisat4, we en-
code the same constraints with MILP language and CNF without optimisation.
Despite the connection between the MILP and the SAT problem with an objec-
tive function, our method has an advantage over CPLEX. For instance, to find
an optimal linear trail in 6-round SPECK32, it takes over 4000s on CPLEX,
comparing to about 2s on Cryptominisat4.1

Another commonly used solver is STP [11], which is a SMT solver and also a
CNF generator. It can encode constraints into CNF file inside the solver based
on SMTLIB2 language, and then call a SAT solver to solve the problem. Unlike
Cryptominisat4, STP does not support XOR clauses and Gaussian elimination,
therefore all clauses involving XOR are translated into standard CNF format.
Thus, with exactly the same constraints derived in Section 3.1, we generate differ-

1 Recently, the MILP-based method was applied to the search of differential charac-
teristics and linear trails of SPECK [10]. The formulae describing the linear approx-
imations differ from those of this paper, and dedicated technics are used to improve
their search. In addition, the authors concatenate two or three shorter linear trails
to attack more rounds, while this paper focuses on finding optimal trails in reduced-
round primitives.

Table 7. Comparison between the runtime of CNF files generated by Section 3 and
STP on the searching problems of SPECK128.

Section 3 STP

Round time1 time2 time1 time2

4 0.05s 0.09s 2s 2s

5 0.8s 1s 4s 7s

6 8s 10s 18s 19s

7 4m44s 1m56s 6m2s 4m20s

8 2s 643m55s 55m4s 114m26s

9 53m51s 16523m 10m27s 12184m

ent CNF files encoded by STP and our method, and compare their performances
on the searching problem of SPECK by considering the number of variables and
clauses in corresponding CNF file, as well as the run time for getting optimal
linear trails and unsatisfiable decision. Both CNF files run on Cryptominisat4.

In most cases, the CNF file encoded by our method has a smaller number
of variables and clauses than the STP-generated ones, and the difference can be
two times for problems in SPECK with larger block sizes. Although the size of
the problem and the speed of solving are not strictly proportional, in general,
less variables and clauses are preferable. Table 7 shows the comparison between
the runtime of CNF files generated by the method in Section 3 and STP solver,
where time1 is the time to find an optimal linear trail, and time2 is the time to
return unsatisfiable. In general, the performance of both methods is comparable.
However it is interesting to notice that, it takes 2s to find one optimal trail for
8-round SPECK128 by our method while STP uses around one hour. It shows
that the performance of CNF files depends heavily on the encoding method and
the underlying problem, therefore our method may provide an alternative way
to solve problems which are not solvable using other solvers.

5 Conclusion

In this paper, we focus on how to find linear trails with optimal correlations in
the ARX structures. We model the question as a boolean satisfiability problem,
translate the propagation of masks through ARX operations into bitwise expres-
sions and CNF constraints, and then solve the problem by SAT solvers. We apply
the automatic search method to the block cipher SPECK and MAC proposal
Chaskey, and obtain the correlation of optimal linear trails for 22/11/13/9/9-
round reduced SPECK32/48/64/96/128 and 3-round Chaskey, where the anal-
ysis of optimal linear trails on Chaskey is presented for the first time so far. In
addition, our method is applied to enumerate linear trails in two linear hulls of
9-round and 10-round SPECK32.

Our work provides a searching tool with improved performance towards
analysing the security of ARX designs against linear cryptanalysis, which is
meaningful to both designers and attackers.

Acknowledgements. We would like to thank the anonymous reviewers for
their valuable comments and suggestions. This work was supported in part by
the Research Council KU Leuven: GOA TENSE (GOA/11/007) and the Re-
search Fund KU Leuven OT/13/071. Yunwen Liu is partially supported by the
China Scholarship Council. Qingju Wang is in part sponsored by National Nat-
ural Science Foundation of China (61472250, U1536103) and Major State Basic
Research Development Program (973 Plan) of China (2013CB338004).

References

1. Aumasson, J.P., Bernstein, D.J.: SipHash: A fast short-input PRF. In: Progress in
Cryptology - INDOCRYPT 2012, pp. 489–508. Springer (2012)

2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to NIST (2008)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference - DAC 2015. pp. 175:1–175:6. ACM (2015)

4. Bernstein, D.J.: ChaCha, a variant of Salsa20, http://cr.yp.to/chacha.html
5. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: New stream cipher de-

signs, pp. 84–97. Springer (2008)
6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-

nal of Cryptology 4(1), 3–72 (1991)
7. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.

In: Topics in Cryptology - CT-RSA 2014, pp. 227–250. Springer (2014)
8. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Fast Software

Encryption - FSE ’95. pp. 275–285. Springer (1995)
9. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,

J., Walker, J.: The Skein hash function family. Submission to NIST (round 3)
(2010)

10. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algo-
rithms for differential and linear trails for SPECK. In: To appear in Fast Software
Encryption - FSE 2016. Springer (2016)

11. Ganesh, V.: STP constraint solver: Simple theorem prover SMT solver, http:

//stp.github.io

12. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.S., Lee, C., Chang, D., Lee,
J., Jeong, K., et al.: HIGHT: A new block cipher suitable for low-resource device.
In: Cryptographic Hardware and Embedded Systems - CHES 2006, pp. 46–59.
Springer (2006)

13. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Advances in Cryptology - CRYPTO 2015, pp. 161–185. Springer (2015)

14. Leurent, G.: Construction of differential characteristics in ARX designs application
to Skein. In: Advances in Cryptology - CRYPTO 2013, pp. 241–258. Springer
(2013)

15. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Advances in Cryp-
tology - EUROCRYPT ’93. pp. 386–397. Springer (1994)

16. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: An efficient MAC algorithm for 32-bit microcontrollers. In:
Selected Areas in Cryptography - SAC 2014, pp. 306–323. Springer (2014)

17. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Information Security and Cryptology
- Inscrypt 2011. pp. 57–76. Springer (2012)

18. Needham, R.M., Wheeler, D.J.: TEA extensions. Tech. rep. (1997)
19. Nyberg, K.: Linear approximation of block ciphers. In: Advances in Cryptology -

EUROCRYPT ’94. pp. 439–444. Springer (1995)
20. Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Fast

Software Encryption - FSE 2006. pp. 144–162. Springer (2006)
21. Schulte-Geers, E.: On CCZ-equivalence of addition mod 2n. Designs, Codes and

Cryptography 66(1-3), 111–127 (2013)
22. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints.

In: Principles and Practice of Constraint Programming - CP 2005, pp. 827–831.
Springer (2005)

23. Soos, M.: A blog about SAT solving and cryptography, http://www.msoos.org
24. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-

lems. In: Theory and Applications of Satisfiability Testing - SAT 2009, pp. 244–257.
Springer (2009)

25. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (related-key) differential characteristic search: Application to SIMON,
PRESENT, LBlock, DES (L) and other bit-oriented block ciphers. In: Advances
in Cryptology - ASIACRYPT 2014, pp. 158–178. Springer (2014)

26. Wallén, J.: Linear approximations of addition modulo 2n. In: Fast Software En-
cryption - FSE 2011. pp. 261–273. Springer (2003)

27. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Fast Soft-
ware Encryption - FSE ’95. pp. 363–366. Springer (1995)

28. Yao, Y., Zhang, B., Wu, W.: Automatic search for linear trails of the SPECK
family. In: Information Security - ISC 2015, pp. 158–176. Springer (2015)

