An Easy-To-Use Tool for Rotational-XOR Cryptanalysis of ARX Block Ciphers

Adrián Ranea1,2, Yunwen Liu1,3, Tomer Ashur1

1 imec-COSIC, K.U. Leuven, Leuven, Belgium
2 Universitat Politècnica de Catalunya, Barcelona, Spain
3 College of Science, National University of Defense Technology, Changsha, China

Abstract. An increasing number of lightweight cryptographic primitives have been published in the last years. Some of these proposals only use additions, rotations and XORs, and these ARX primitives have shown a great performance in software. In this paper, a computer tool to automate the security evaluation of ARX block ciphers is shown. Our tool takes a Python implementation of an ARX block cipher and analyse its resistance against rotational-XOR cryptanalysis. As opposed to most of the tools to analyse ciphers, our tool can be used with any ARX block cipher with minimal effort.

Keywords: ARX, rotational-XOR cryptanalysis, automatic search, ArxPy

1 Introduction

Due to the progress of technology, electronic devices have become so cheap and small that they are being embedded in everyday objects. As a result, the Internet is evolving into a network of “smart objects” that communicate with each other. This “Internet of Things” will include about 20 billion devices by 2020 according to Gartner [16].

The basic function of these devices is to collect and transmit information. In some cases, sensitive information is collected such as health-monitoring or biometric data [10]. Therefore, there is a high demand to implement cryptographic algorithms in these devices.

However, some of these new devices have so extreme constraints in computational power, chip area or memory that they are not powerful enough to use the same cryptographic algorithms as standard PCs. Example of these types of devices are RFID (Radio-Frequency IDentification) chips and sensor networks. For this reason, many cryptographic algorithms tailored to such constrained environments have been published recently.

Some of these proposals only use three types of operations: modular addition, cyclic rotation and exclusive-or (XOR). Examples of these Addition-Rotation-XOR (ARX) primitives are Salsa20 [5], Chaskey [23], or SPECK [4]. ARX primitives are among the best performers in software [11].
Differential cryptanalysis [6], one of the most powerful attack against block ciphers, have been applied to several ARX primitives [7, 24, 27]. On the other hand, rotational cryptanalysis has become very popular to analyse ARX primitives [18, 19].

Unfortunately, rotational cryptanalysis cannot be applied to ARX primitives where constants are injected into the state. To overcome this drawback, a combination of differential and rotational cryptanalysis was considered in [18] and formalized as rotational-XOR cryptanalysis in [1].

A crucial step in differential cryptanalysis and rotational-XOR cryptanalysis is the search of characteristics. Recently, automatic search tools have been used for finding characteristics with high probability in ARX primitives. In [24], a SAT-based method was proposed for finding differential characteristics of Salsa20. More recently, a SAT solver was used for finding rotational-XOR characteristics of Speck [2].

In this paper, we present a computer tool for finding optimal rotational-XOR characteristics of ARX block ciphers. Our tool ArxPy takes a Python implementation of an ARX block cipher as input, generates a set of SAT problems, and finds an optimal characteristic by using a SAT solver. The entire process is automatic; the user has only to provide the implementation of the cipher. ArxPy can be used by researchers to find vulnerable ciphers, by cipher designers to adjust their designs or by any user who wants to measure the strength of a cipher against rotational-XOR cryptanalysis.

The rest of this paper is organized as follows: in Sect. 2, ARX block ciphers and rotational-XOR cryptanalysis are introduced. In Sect. 3, a SAT-based method for finding optimal rotational-XOR characteristic is described. ArxPy is presented in Sect. 4, along with its usage and implementation. Lastly, Sect. 5 concludes this paper.

2 Preliminaries

2.1 Notations

The notations used in this paper is shown in Table 1.

2.2 ARX Block Ciphers

Block ciphers which only use modular additions, cyclic rotations and exclusive-or (XOR) operations are called Addition-Rotation-XOR (ARX) block ciphers. The usage of these operations in modern block ciphers is not new; the first one dates back to 1987: the FEAL cipher [26]. The term ARX is more recent; it was proposed in 2009 by Weinmann [30].

Many ARX block ciphers have been proposed since 2009. Some examples are: LEA [17], SPARX [12], Speck [4], and Threefish [13].

ARX block ciphers are among the best performers in software. In a comparison of software implementations of block ciphers for small processors [11], the
most efficient ones were ARX block ciphers. Furthermore, ARX block ciphers are simple and easy to describe, which results in implementations with small code size. As shown in [11], the implementations with the smallest code size were achieved by ARX block ciphers.

In [18], it was shown that any function can be realized with modular additions, rotations, XORs and a single constant. Furthermore, removing one of these operations results in a dramatic loss of security.

2.3 Rotational-XOR Cryptanalysis

Rotational-XOR cryptanalysis is a recent technique to analyse ARX block ciphers. Ashur and Liu formalized it and applied it to Speck [1]. This technique studies the propagation of rotational-XOR (RX) differences through the encryption function of ARX block ciphers. First, some notation is introduced.

Definitions and Notation. A pair of variables \((X, X')\) has RX difference \((\alpha, \gamma)\) if
\[
X \oplus (X' \ll \gamma) = \alpha.
\]

In this paper, \(\gamma\) will be fixed to one and we will omit it, that is, we will say that a pair \((X, (X \oplus \alpha) \ggg 1)\) has RX difference \(\alpha\).

In rotational-XOR cryptanalysis, the attacker can obtain the encryption of plaintexts under a pair of keys \((k, k^*)\) where the RX differences of pairs of round keys \((k_i, k^*_i)\) are known to the attacker.

The RX difference of a plaintext pair is called an input RX difference and the output RX difference is the RX difference of the ciphertext pair. In addition, a sequence of intermediate RX differences along with the input RX difference and RX output difference is called an RX characteristic.

Rotational-XOR Attack. Rotational-XOR cryptanalysis is a distinguishing attack that exploits input RX differences producing output RX differences with a
probability higher than for a random permutation. To the best of our knowledge, the only application of rotational-XOR cryptanalysis (as described in [1]) is a distinguishing attack on Speck [1, 2].

In the rest of this section, the propagation of RX differences through the ARX operations will be studied. The results about the propagation of RX differences will be used in Sect. 3 to describe a method to search for optimal RX characteristics.

Propagation of RX Differences. The propagation of RX differences through rotation or XOR is deterministic. Table 2 contains the resulting RX differences after rotation or XOR given two pairs \((X, X')\) and \((Y, Y')\) with RX differences \(\alpha\) and \(\beta\) respectively and a constant \(c\).

Table 2. Propagation of RX differences through rotation and XOR

<table>
<thead>
<tr>
<th>Pair</th>
<th>RX difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>((X \ggg c, X' \ggg c))</td>
<td>(\alpha \ggg c)</td>
</tr>
<tr>
<td>((X \lll c, X' \lll c))</td>
<td>(\alpha \lll c)</td>
</tr>
<tr>
<td>((X \oplus Y, X' \oplus Y'))</td>
<td>(\alpha \oplus \beta)</td>
</tr>
<tr>
<td>((X \oplus c, X' \oplus c))</td>
<td>(\alpha \oplus c \oplus (c \ll 1))</td>
</tr>
</tbody>
</table>

The propagation of RX differences through modular addition is not deterministic, but its probability can be computed according to the following theorem [1].

Theorem 1. Let \(X, Y\) and \(Z\) be \(n\)-bit vectors chosen uniformly at random and let \((X, X')\), \((Y, Y')\) and \((Z, Z')\) be three pairs with RX differences \(\alpha\), \(\beta\) and \(\zeta\) respectively. Then,

\[
P(\alpha, \beta \implies \zeta) \overset{def}{=} P[(X \oplus Y, X' \oplus Y') = (Z, Z')] = 2^{-\|g\|} \times 1_{f \geq 1} + 2^{-\|\tilde{g}\| - 1.415} \times 1_{f \leq \tilde{g}}
\]

where

\[
1_x = \begin{cases} 1 & \text{if all bits of } x \text{ are set to 1} \\ 0, & \text{otherwise} \end{cases}
\]

\[
f = (\tilde{\alpha} \oplus \tilde{\beta} \oplus \tilde{\zeta}) \oplus ((\tilde{\alpha} \oplus \tilde{\beta} \oplus \tilde{\zeta}) \ll 1)
\]

\[
g = (\tilde{\alpha} \oplus \tilde{\zeta} \mid \tilde{\beta} \oplus \tilde{\zeta}) \ll 1
\]

When \(\alpha\), \(\beta\) and \(\zeta\) vanished, Theorem 1 predicts the probability that the rotational property is preserved after a modular addition.
3 Automatic Search for Rotational-XOR Characteristics

Characteristics can be used to estimate the success probability of differential and rotational-XOR cryptanalysis. The higher the probability of the characteristic, the higher the success probability of the distinguishing attack.

Different automated methods have been proposed to search for characteristics of ARX systems [7, 14, 24]. This section explains the SAT-based method shown in [2], which is the technique implemented in ArxPy. The conducting idea is to translate the search problem to a set of SAT problems and to solve the SAT instances using an existing SAT solver. First, the SAT problem and the SMT problem is introduced.

3.1 The Boolean Satisfiability Problem

A boolean formula is an expression which consists of boolean variables, which can take the values TRUE or FALSE, and the logic operators AND, OR and NOT. A boolean formula is satisfiable if there exists an assignment of the variables that makes the formula TRUE. For example the boolean formula \(a \text{ AND} (\text{NOT} \ b) \) is satisfiable since the assignment \((a, b) = (\text{TRUE}, \text{FALSE})\) evaluates the entire formula to TRUE.

The boolean satisfiability (SAT) problem is the problem of determining whether a boolean formula is satisfiable. In general, the SAT problem is NP-complete [9], which implies that no known algorithm solves SAT in polynomial time (with respect to the number of variables). In other words, solving a SAT problem is infeasible if the number of variables is high enough. In practice, SAT solvers can handle instances with thousands (and sometimes even millions) of variables [31].

A generalization of the SAT problem is the satisfiability modulo theories (SMT) problem. Basically, SMT formulas can be expressed with richer languages than boolean formulas. In particular, a formula in the bit-vector theory can contain boolean vectors and the usual operations of boolean vectors such as bitwise operations (XOR, OR, AND, etc) arithmetic operations (addition, multiplication, etc), rotations and so on.

3.2 A SAT-based Method for Searching Optimal Rotational-XOR Characteristics

A triplet of RX differences \((\alpha, \beta, \zeta)\) is valid if \(\alpha\) and \(\beta\) propagate to \(\zeta\) after a modular addition with non-zero probability. Using the notation of Theorem 1, the triplet \((\alpha, \beta, \zeta)\) is valid if the following condition holds:

\[
\tilde{f} \preceq \tilde{g}
\]

The weight \(\omega\) of a valid triplet \((\alpha, \beta, \zeta)\) is defined as follows:

\[
\omega(\alpha, \beta, \zeta) \overset{\text{def}}{=} -\log_2(P(\alpha, \beta \rightarrow \zeta)) =
- (\|g\| + 3) \times f_0 - (\|g\| + 1.415) \times f_{0\oplus 1}
\]
where \(f_0 \) is the least significant bit of \(f \). The weight \(W \) of an RX characteristic is defined as the sum of the weights of each of its modular additions. Assuming the probability of a characteristic is the multiplication of the probabilities of each modular addition, the probability of an RX characteristic is \(2^{-W} \).

The main idea of this technique is to use a SAT solver to determine whether there exists an RX characteristic with less weight than some threshold. If the SAT solver obtains that this problem is satisfiable, a lower upper bound is chosen. Otherwise, a higher upper bound is chosen. This is repeated until the minimal weight is found, that is, a value \(\hat{W} \) such that there exists an RX characteristic with weight less than \(\hat{W} \) but not greater than \(\hat{W} - \epsilon \), where \(\epsilon \) is a value fixed from the start (usually \(\epsilon = 1 \) \([2, 24]\)).

Different strategies can be used to obtain the minimal weight. In \([24]\), the search starts with a low weight and it is incremented by one until a satisfiable formula is found. In \([20]\), the search starts with a high weight and it is decremented by one until an unsatisfiable formula is found. In \([2]\), a binary search strategy is used to find the minimal weight.

SAT solvers not only determine whether a formula is satisfiable or unsatisfiable, but also obtain an assignment that makes the formula TRUE if it is satisfiable. Therefore, the result of this method is a minimal weight \(\hat{W} \) and an RX characteristic with probability in the interval \((\hat{W} - \epsilon, \hat{W})\).

Since the RX differences of the round keys are necessary to propagate the RX differences through the encryption function, a pair of characteristics is actually considered: one for the key schedule and one for the encryption. The RX differences predicted by the key-schedule characteristic are used in the encryption characteristic. Similar to \([2]\), first it is minimized the encryption weight and the key-schedule weight.

The operations of an ARX cipher are performed on \(n \)-bit strings, whereas the formula of SAT problems can only contain boolean variables and the operations AND, NOT and OR. Therefore, an SMT problem in the bit-vector theory, which supports boolean vectors variables and the usual operations of boolean vectors, is used instead. The SMT problem is written as follows:

- For every pair of \(n \)-bit input words of the key schedule and the encryption, an \(n \)-bit vector is used to represent its RX difference.
- Additional \(n \)-bit vectors are used to represent the RX differences after the addition, XOR and rotation operation when required.
- For every XOR and every rotation of the cipher, Table 2 is used to propagate properly the RX differences.
- For every modular addition of the cipher, (1) is used to ensure that the RX differences are propagated with non-zero probability and (2) is used to calculate the weight of the modular addition.
- Finally, two constraints are used to ensure that the weights of both characteristics are lower than the given upper bounds.
The tool ArxPy

ArxPy is a tool for finding optimal rotational-XOR characteristics of ARX block ciphers. Basically, ArxPy takes a Python implementation of an ARX block cipher as input and applies the SAT-based method described in Sect. 3.2.

To the best of our knowledge all automated tools [2, 21, 28, 29] searching for characteristics with high probability are implemented specifically for a particular cipher or for a small set. In order to use such tools with an arbitrary cipher, a significant effort is required.

Given a Python implementation of an ARX block cipher, ArxPy is executed with a simple shell command. Therefore, the only effort to use ArxPy is implementing the ARX block cipher in Python, which is negligible due to the low development time and code complexity of the Python programming language. On top of that, ArxPy is open source and has a modular architecture. Therefore, it can be easily adapted for specific needs.

ArxPy expects a certain structure in the Python implementation of an ARX block cipher. The first part of this section will explain this structure. Then, how to execute ArxPy and its implementation will be described.

4.1 Structure of Python Implementations of ARX Block Ciphers

A Python implementation of an ARX block cipher following the structure required by ArxPy will be called an ARX implementation. Any iterated ARX block cipher can be considered, as long as all its operations are performed on words of the same size.

A minimal ARX implementation contains a global variable, wordsize, and two functions, key_schedule and encryption. The global variable wordsize contains the word size (in bits) of the ARX block cipher.

The function key_schedule implements the key scheduling algorithm of the ARX block cipher. This function has m arguments representing the m words of the key. It has no return value; the round keys are stored into the list-like object round_keys.

The function encryption implements the encryption algorithm of the ARX block cipher. The arguments of this function represent the words of the plaintext. The output of each round is stored in the list-like object rounds, except the last one, that is used as the return value. This function can obtain the round keys from the list-like object round_keys.

In order to implement the encryption and the key schedule, the Python operators +, >>, << and ^ are used as the modular addition, right and left rotation and XOR, respectively.

Apart from the variable wordsize and the functions key_schedule and encryption, additional variables and functions can be defined to improve the readability and the modularity of the implementation. Figure 1 contains an ARX implementation of Speck with 32-bit block size (Speck32). In addition, test vectors can be added to verify the implementation and differences can be fixed to particular values using the functions test and fix_differences.
wordsize = 16
count_of_rounds = 22
alpha = 7
beta = 2

round function
def f(x, y, k):
x = ((x >> alpha) + y) ^ k
y = (y << beta) ^ x
return x, y
def key_schedule(l2, l1, l0, k0):
l = [None for i in range(number_of_rounds + 3)]
round_keys[0] = k0
l[0:3] = [l0, l1, l2]
for i in range(number_of_rounds - 1):
l[i+3], round_keys[i+1] = f(l[i], round_keys[i], i)
def encryption(x0, y0):
rounds[0] = f(x0, y0, round_keys[0])
for i in range(1, number_of_rounds):
x, y = rounds[i - 1]
round_output = f(x, y, round_keys[i])
if i < number_of_rounds - 1:
 rounds[i] = round_output
else:
 return round_output

Fig. 1. An ARX implementation of Speck32.

4.2 Running The Program

ArxPy uses the Python library SymPy [22] and the SMT solver STP [15]. They, together with Python3, must be installed in order to execute ArxPy.

The shell command to run ArxPy is the following:

```
python3 arxpy.py <ARX_implementation> <output>
```

where `<ARX_implementation>` is the name of the file containing an ARX implementation and `<output>` is the name of the file where the output will be written.

To find an optimal RX characteristic, ArxPy searches for characteristics up to many weights. During an execution of ArxPy, these intermediate char-
characteristics are written to the output file. After the execution finishes, the last characteristic in the output file is the optimal one.

4.3 Implementation

ArxPy have been implemented in three modules: the ARX block cipher parser, the SMT writer and the characteristic finder. The parser module has been written from scratch and the other two modules are based on the tool proposed in [2]. This section explains briefly these three modules.

The parser module takes an ARX implementation and generates symbolic expressions of the output values of each round and the round keys. This is done by modifying the source code of the ARX implementation dynamically and executing the functions key schedule and encryption symbolically. The Abstract Syntax Tree (AST) of the ARX implementation is used to modify the source code dynamically, whereas SymPy, a Python library for symbolic mathematics, is used to generate and handle the symbolic expressions.

The writer module takes the symbolic expressions generated by the parser module and writes the SMT problem. The SMT problem is written in the SMT-LIB v2 language, an input format supported by many SMT solvers such as STP, the SMT solver used by ArxPy. This is done by extracting the sequence of ARX operations of the encryption and the key schedule and translating these operations to equations according to the steps described in Sect. 3.2. The sequence of operations is obtained from the symbolic expressions by traversing them as trees and extracting their nodes with the methods provided by SymPy.

The finder module implements the search strategy to find the optimal RX characteristic. A binary search strategy, based on [2], is used to minimize the weight of the characteristic.

5 Conclusion

Recently, several ARX block ciphers have been proposed, along with cryptanalytic techniques to analyse their security. ArxPy was developed to automate the evaluation of the security of these ciphers.

Given a Python implementation of an ARX block cipher, ArxPy finds an optimal RX characteristic with a simple shell command. The entire process is automatic, so ArxPy can be used with any ARX block cipher with minimal effort.

On top of that, ArxPy can be easily adapted thanks to its modular architecture. For example, another SMT solver which supports the SMT-LIB v2 language can be used instead of STP just by modifying a few lines of code. As another example, a different search strategy can be considered by modifying only the characteristic finder module.

ArxPy can analyse round-reduced ciphers efficiently but analysing an entire cipher may not be feasible. This is a common problem of automated methods for finding optimal characteristics, including SAT-based methods. However, SAT
and SMT solvers are constantly improving and ArxPy can be adapted to any
SMT solvers with few modifications.

5.1 Future Work

There are several ideas to continue this work. One option could be to adapt
ArxPy for other cryptanalytic techniques. Furthermore, ArxPy could be ex-
tended to accept software implementations in other languages. Since many au-
thors of ARX block ciphers [4, 12, 17] draw a diagram to illustrate their ciphers,
another possibility would be to use a data flow diagram as input.

Another option could be to improve ArxPy by finding all the characteristics
that share the input RX difference and the output RX difference of the optimal
characteristic. This can be done with a SAT solver, as shown in [20], and the
sum of the probabilities of all these characteristics provides a better estimation
on the success probability.

References

1. T. Ashur and Y. Liu, Rotational Cryptanalysis in the Presence of Constants,
Cryptanalysis of ARX-based Primitives, in Proceedings of the 38th Symposium
on Information Theory in the Benelux, Delft, NL, 2017, Werkgemeenschap voor
Informatie- en Communicatietechniek.
2.0, tech. rep., Department of Computer Science, The University of Iowa, 2010.
www.SMT-LIB.org.
4. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, The SIMON and SPECK Lightweight Block Ciphers, in Proceedings of the 52Nd Annual Design Automation Conference, DAC ’15, New York,
NY, USA, 2015, ACM.
5. D. J. Bernstein, The Salsa20 Family of Stream Ciphers, in New Stream Cipher
Designs, M. Robshaw and O. Billet, eds., no. 4986 in Lecture Notes in Computer
6. E. Biham and A. Shamir, Differential Cryptanalysis of DES-like Cryptosystems,
7. A. Biryukov and V. Velichkov, Automatic Search for Differential Trails in
8. R. Brummayer and A. Biere, Boolector: An Efficient SMT Solver for Bit-Vectors
and Arrays, in Tools and Algorithms for the Construction and Analysis of Systems,
York, NY, USA, 1971, ACM.
10. D. V. Dimitrov, Medical Internet of Things and Big Data in Healthcare, Healthc

