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İstanbul, Turkey
akupcu@ku.edu.tr

Bart Preneel
ESAT/COSIC - KU Leuven

Leuven, Belgium
bart.preneel@esat.kuleuven.be

Abstract—Social networks provide users with solutions to man-
age and acquire social connections in the modern society. Since
users of a social network can make a new friendship even when
they are not meeting physically, there should be a mechanism
enabling them to securely verify identity of each other. One
such mechanism is to check if there are enough number of
common friends, relying on the friendships established already.
Current protocols for mobile social networks require parties
to act honestly during the protocol, and are limited to the two-
party settings. We propose two solutions for friend matching
based on authenticated data structures and polynomial opera-
tions that preserve privacy of non-common friends and provide
authenticity of the result. Both constructions are efficient and
general to be employed in multi-party settings.

1. Introduction
Social networks such as Facebook and Linkedin play

an important role in current modern society. The successful
growth of these networks have collected millions of users,
connecting people having common interests and suggesting
new potential friends based on these similarities. For ex-
ample, Facebook may suggest people graduated from the
same school to each other. In the digital world, users can
use the existing friendship relationships as a source of trust
to extend their connections. For instance, you can find your
classmates through those who are already in your friend list.

In addition, there was extensive progress and popularity
in smart mobile devices aligned with the growth in their
resources, boosting mobile social networks (MSNs). While
offering social networking services over the mobile devices,
MSNs present distinct differences compared to the fixed
(landline) social networking. First, mobile devices are phys-
ically carried around by their owners and create a good
opportunity to provide location-based services. Second, the
computational and power constraints in mobile devices limit
the use of expensive cryptographic computations. This af-
fects data input and output capabilities of these devices.
Third, the MSN has a much larger number of potential users,
and a diverse set of services can be offered as it does not
require access to a computer [8].

In both the real and digital worlds, people can extend
their connections through existing ones. For this, they should
have and prove existence of enough number of common

friends. Trust on the existing common friends helps them
trust each other and make a new friendship.

To become friends through a social network, either two
users meet physically, exchange their social network IDs,
and lookup each other on the given network; or one user
sends a request to another user that has many common
friends (or interests) with him. The existence of sufficient
common friends ensures both users that the other user is
really the one who is claimed to be.

MSNs enable users search for potential friends or people
with common interests on-the-fly. When a user enters a
place, her mobile device performs a search and discovers
those with enough common friends or interests. For exam-
ple, when the user is waiting for her flight in an airport,
her mobile device discovers someone with enough common
friends in her vicinity [8], or someone graduated from the
same school as she did. This can be generalized to multi-
party cases, i.e., your mobile device surprises you notifying
that five of your classmates are in the same conference you
are attending. We focus only on matching common friends.

Secure common friend matching. The common friend
matching problem requires the users to be registered at the
same social network, through which they populate and ex-
tend their friend lists. Since the friendship relationships are
established through the network, a naive solution is to ask
the server compute and send the parties the set of common
friends. Though this works for fixed social networks, it does
not suit the MSN as it requires access to the network all the
time, while the users may be in a place with no network
coverage or Internet access. Another naive solution in such
cases is that the users reveal their friend lists to each other.
It is clear that it does not preserve users’ privacy.

Matching common friends is actually a private set inter-
section (PSI) problem, where each user has its own private
friend list. The users want to jointly find the intersection of
their friend lists, while learning minimum information about
the non-common friends. Ideally, they should learn nothing
beyond the intersection. Existing PSI schemes mostly rely
on public key based primitives that prohibit their usage in
MSNs. Moreover, in the absence of a trusted party, each
user can modify her private set to either learn more about
the other party or give less information to the other party.
Further, these scheme are mostly two-party schemes, i.e., if



more than two users involved, the heavy PSI scheme should
be run among all users either sequentially or pairwise.

Our contributions These observations motivated us to
proposes a light-weight common friend matching scheme
that preserves privacy of friend lists and is generalizable
to more than two users. Authenticity is another problem we
address, i.e., each user can check authenticity of the friend
list(s) given by other user(s) and the result. Our scheme does
not need online access to the social network or Internet. It
only assumes occasional access to the network to manage
the friend lists. Our contributions are summarized as:
• We give the first security definition of a common

friend matching scheme, and prove our construction’s
security formally against the definition.

• Our scheme operates only on the given friend lists.
Hence, it can be performed mechanism even without
requiring Internet access or the MSN.

• The user IDs are high entropy IDs chosen from a large
domain, and their hashes are used to populate the lists.
Hence, each user only learns the common friends (if
any), helping preserve privacy of the users.

• Our scheme provides authenticity of the result by
accompanying it with a cryptographic proof.

• Our solution is generalizable to more than two users.
Therefore, instead of performing the matching sequen-
tially or between all possible pairs of the involved users,
all users send their friend lists to one user who runs
the matching algorithm and distributes the result and
proof to the other users for verification.

2. Background
2.1. Related Work

Proximity measure is a way for two (or more) people,
who do not trust each other, to perform a joint computation
[8]. The main purpose is to realize whether the involved
users can trust each other through measuring how close
or similar they are. Different approaches have proposed
to measure proximity between users, e.g., the number of
common friends, or the number of common interests and
attributes. The focus of this work is only on common friends.

Private set intersection (PSI) is a cryptographic proto-
col helping two mutually untrusted parties, each with its own
private set, to jointly calculate the intersection of their sets,
while minimum amount of information is revealed during
the protocol execution. In other words, at the end of protocol
execution, each party has the intersection in hand, without
(ideally) learning any extra information about the set of the
other party. Several schemes using different primitives have
been proposed for PSI [3], [4], [7], [12], [15], [16], [18].

An inherent problem with the PSI protocols in the
absence of a trusted third party (TTP) is the malicious
behavior of parties. A party may not provide her set entirely
as input to the protocol (preventing the other party form
learning the existence of some elements), or may include
extra elements in her set (to learn more about the other
party). The authorized PSI (APSI) protocols [3], [6] solve

the second problem (not the first one) making the parties use
only the input elements that are authorized by an authority.

De Cristofaro et al. [5] introduced the private contact
discovery as an efficient cryptographic primitive using which
two users of a social network, on input their contact lists,
calculate their common contacts, and learn nothing beyond
that. However, the underlying primitive used in their con-
struction and the discovery protocol are relatively complex
and does not suit the MSN capabilities.

Nagy et al. [21] used PSI techniques to find common
friends in social networks, through combining PSI with
bearer capabilities to provide authenticity and privacy, in
a semi-honest setting.

Commutative encryption is informally a pair of en-
cryption functions f and g satisfying f(g(m)) = g(f(m)),
for a message m [1]. When used for two-party computation,
each party only applies its function, and at the end, both of
them get the same result. VENETA [26] used it for friend-
of-friend detection.

Dot product. Similarities between the users’ interests
and properties are computed to measure their proximity. The
interests and attributes of each user is represented as her
social coordinates, and dot product of two social coordinates
is used to measure the proximity between them [8]. The dot
product is applied in different scenarios [27], [8]. Liao et al.
[19] introduced S-MATCH, as a privacy-preserving profile
matching framework using property-preserving encryption.

Trust on existing friends. If a user A trusts another
user B, she can also trust the other users confirmed or
suggested by B. This helps generate a web of trust with
diverse potential applications. Nagy et al. [21] used this
relationship for finding out potential friends: Two users of
a social network can trust each other if they have sufficient
number of common (already trusted) friends.

Freedman and Nicolosi [11] proposed a privacy-
preserving protocol for verifying social proximity, and used
it in an email system for automatically whitelisting incoming
emails based on the sender. Each user attests a set of other
users (her friends in a social network), meaning that she will
accept emails coming from those users. Alice will accept
emails coming from Carol (not in her own list) if there is a
user Bob who is attested by Alice, and he attests Carol.

Yu et al. [27] used the friendship relations as human-
established trust relationship to defend against sybil attacks,
where a malicious user creates multiple fake identities for
herself to be able to ‘out vote’ the honest users.

To sum up, the privacy-preserving PSI schemes use
complex cryptographic primitives that do not suit the pro-
cessing powers of mobile devices. The other approaches
fail to address users’ privacy. All these schemes, including
the authorized PSI protocols, authenticate the friend IDs of
each user one-by-one. This allows a user manipulate her list
before getting involved in a protocol execution.

Table 1 presents a comparison among these works.

2.2. Preliminaries
Notation. |X| shows the number of elements in a set

X, and x← X denotes the fact that x is sampled uniformly



TABLE 1: Common friend matching protocols. (Fu is the friend list of user u. Costs of our construction are for two-player case.)

Protocol Players
Cost of

Communication Initiator (A) Responder (B)
De Cristofaro et al. [6] 2 O(|FA + FB |) O(|FA|) O(|FB |)
De Cristofaro et al. [5] 2 O(|FA|2) O(|FA|) O(|FB |)

Nagy et al. [21] 2 O(|FA + FB |) O(|FA|) O(|FB |)
VENETA [26] 2 O(|FA + FB |) O(|FA + FB |) O(|FA + FB |)

Our construction Multiple O(|FA + Common|) O(|FA|) O(|Common|)

from the set X. || represents concatenation, and PPT denotes
probabilistic polynomial time. λ is the security parameter.

A function ν(λ) : Z+ → [0, 1] is negligible
if ∀ positive polynomials p,∃ a constant c such that
∀ λ>c, ν(λ)<1/p(λ). Overwhelming probability is greater
than 1− ν(λ) for some negligible function ν(λ).

In addition, we consider Encpk(·) to be an additive
homomorphic public key encryption, such that the follow-
ings are valid: Encpk(a + b) = Encpk(a) · Encpk(b) and
Encpk(a · b) = Encpk(a)

b for a, b ∈ R.
Hash functions generate fixed-length strings, given

arbitrary-length strings. Let h:K×M→C be a family of hash
functions, and hK() with K∈K identify a member. A hash
function family is collision resistant if ∀ PPT adversaries
A,∃ a negligible function ν(λ) s.t. Pr[K ← K; (M,M ′)
←A(h,K) : (M ′ 6= M)∧(hK(M) = hK(M ′))] ≤ ν(λ).
A hash function family is preimage resistant if ∀ PPT
adversaries A,∃ a negligible function ν(k) s.t. Pr[K←K;
M←M;C←hK(M);M ′←A(h,C) : C=hK(M ′)]≤ν(λ).
Collision resistance implies preimage resistance [17].

Authenticated Data Structure (ADS) is a scheme for
data authentication used by an untrusted server to answer
the client queries and provide cryptographic proofs showing
authenticity of his answers [25], [23]. The client can verify
the proof against some local metadata. There are different
types of ADSs: accumulators [2], authenticated skip lists
[14], authenticated hash tables [24], Merkle hash trees [20],
2-3 trees [22], and hierarchical ADSs (HADS) [9].
Definition 2.1. An ADS scheme consists of the following

polynomial-time algorithms [23], [9]:
k ← Gen(1λ): Run by users to generate a key k given the

security parameter λ. They share k with the network.
(ans, π) ← Certify(k, cmd): Run by the network to

perform a user command cmd. The proof π enables
the user verify authenticity of the answer ans.

{accept,reject} ← Verify(k, ans, π): A client runs
this algorithm to verify authenticity of the answer. It
takes as input the key k, the answer ans, and the proof
π. It finally outputs an accept or a reject signal.

Definition 2.2. A signature scheme, used for message
integrity, includes the following PPT algorithms [13]:

(sk, vk) ← Gen(1λ): Run by the network to generates a
pair of signing and verification keys (sk, vk) using the
security parameter λ. He then shares vk with all users.

σ ← Sign(sk,m): Run by the network to compute a
signature σ on a value m using the signing key sk.

{accept,reject} ← Verify(vk,m, σ): Users use
this algorithm to check whether σ is a valid signature
on a value m, using the verification key vk. It outputs
an acceptance or a rejection signal, accordingly.

3. Formal Definitions
Model. We consider users to be members of the same

social network, and connected by a friendship relationship
in order to access and exchange information. For simplicity,
we assume relationships among users to be symmetric.
The network allows users to get registered, search and add
friends, and perform social activities. The network stores
all information about users and their activities, and presents
them upon request. Most user operations are done through
the network, but they can also work jointly to perform a
task, i.e., compute list of common friends. We use the terms
user and client interchangeably. Also, network refers to the
MSN. Figure 1 shows our common friend matching model.

Adversarial model. We consider the network to be
trusted, providing users with the correct friend lists and
updates when two users become friends. However, users
do not trust each other. Hence, before becoming friends,
they should know each other either directly or through the
common friends, which requires be checked and proven.
This work targets the second case: helping two or more
users to see if they have enough common friends and can
be friends. Once they became friends, they trust each other.

3.1. Overview of Our Scheme
Showing enough number of common friends ensures

parties that they are connecting to the right user, when they
do not physically meet. This should be done in a privacy-
preserving manner, i.e., each user learns only the common
friends. Further, each user wants to make sure the other user
is participating with the correct set of her friend IDs.

In our scheme, the MSN assigns a high-entropy random
ID to each user upon registration. Besides, to ensure the
friend lists are not manipulated, we store hash of friend
IDs of each user in a tree-based ADS, and ask the MSN to
certify the digest of the ADS. Storing hash of IDs prevents
revealing the real friend IDs, and helps preserve privacy. The
tree ties all friend IDs together, and the MSN’s certification

User A

User B

MSNFriend matching

Register

Add/delete friend

Friend list + signature

Register

Add/delete friend

Friend list + signature

Figure 1: Our common friend matching model.



ensures that the tree is not tampered with. As a result, each
user can rest assured that the other user provides a correct
friend list. Note that certifying the IDs in a friend list one-
by-one, as in [3], [4], does not provide authenticity of a
friend list since one may hide some of her friends.

3.2. The Common Friend Matching Scheme
A common friend matching scheme allows users of a social
network to efficiently match their common friends while
ensuring authenticity of the result and preserving privacy of
the users. Let h(.) be a collision resistant hash function.

Definition 3.1. A common friend matching scheme in-
cludes the following PPT algorithms between stateful
users and a stateful social network:

(skp, vkp)← Setup(1λ) : Run by the network to generate
the signing and verification keys (skp, vkp), given as
input the security parameter λ. He shares the verifica-
tion key vkp with the users.

(idu, Lu, σu)← Register(u) : The network selects a
random ID idu for the user u, creates an empty friend
list Lu, signs it as σu, and sends both to the user.

(L′u1
, σ′u1

, L′u2
, σ′u2

)← Add(skp, vkp, idu1
, idu2

, Lu1
, Lu2

)
: The network runs this algorithm on receipt of a
friendship request from a user u1 and confirmation of
a user u2. It adds idu1

into Lu2
(friend list of idu2

) to
compute L′u2

. Similarly, it updates Lu1
(idu1

’s friend
list) by inserting idu2

. He then signs the friend lists as
σ′u1

and σ′u2
, and sends each to the respective user.

(L′u1
, σ′u1

, L′u2
, σ′u2

)← Break(skp, vkp, idu1
, idu2

, Lu1
, Lu2

)
: The network runs this algorithm on receipt of a
breaking request from a user u1. It removes idu1

from
Lu2

, and idu2
from Lu1

. He then signs the resulting
L′u1

and L′u2
as σ′u1

and σ′u2
, respectively, and sends

each back to the corresponding user.
(π, Lcmn)← Match(vkp, Lu1

, σu1
, Lu2

, σu2
, . . .) : Run

by a user to compute the set of common friends
Lcmn and a proof π. It takes as input the network’s
verification key and the friend lists and certifications of
all users whose common friends are being calculated.

(accept/reject)← Verify(vkp, Lcmn, π) : Each
user runs this algorithm to verify the proof π and the
set of common friends Lcmn. It returns accept if
the proof is verified, and reject otherwise.

When the user asks the network to make a friendship with
another user, it waits for conformation of the other user to
complete the task. Breaking friendship is done upon request.
The network is not involved in a Match protocol that is run
among the involved users. The friend lists are encoded.

Authenticity. If the user running the matching algo-
rithm deviates from honest behavior by giving wrong an-
swers and proofs1, the other users should detect it with
overwhelming probability, and vice versa. The authenticity
game AuthGameA(λ) between the adversary A who acts as
the malicious user running the matching algorithm and a

1. The case a malicious user provides a manipulated list is similar and
simpler: A only provides the friend list, and C runs the matching protocol.

challenger C who plays the role of the network and other
involved honest user(s), is defined as:
• Initialization. The challenger starts the Setup algo-

rithm to initialize the environment and generate the pair
of signing and verification keys (sk, vk). He stores the
keys, and shares the verification key with A.

• Friendship. A first asks C to register him. C runs the
Register algorithm and sends A the result. A speci-
fies a user idu and asks the challenger to run either the
Add or the Break algorithm. The challenger executes
the requested algorithm and sends him the results. A
also asks for the friend list of a user idu′ from the
challenger, executes the Match algorithm, and returns
back the proof. C verifies the proof and informsA about
the result. This is repeated polynomially-many times.
C keeps a local copy that is transparent to A.

• Challenge. A asks C the friend list of a user idu and
returns a list Lcmn and a proof π. C outputs accept
if the proof is verified, and reject otherwise.
A wins the game if the challenger accepts, while the

obtained common friend list differs from the real one. The
output of game is defined to be 1 in this case.
Definition 3.2 (Authenticity). Our common friend matching

scheme is authentic if no PPT adversary A can win the
above game with probability better than negligible in
the security parameter, i.e., Pr[AuthGameA(λ) = 1] ≤
ν(λ), ∀ PPT A, and some negligible function ν(λ).

Privacy. By privacy, we mean that our scheme reveals
no information about non-common friend IDs to the users
running the matching algorithm. The adversary is trying
to discover the identity of some non-common users from
the received encoded friend lists. Our scheme is private
if no adversary can win the following experiment with a
significant probability. The privacy game PrivGameA(λ)
between the adversary A who acts as the malicious user
and a challenger C who plays the role of the network and
other (honest) users, is defined as (A has oracle access to
the ID encoding algorithm, E(.)):
• Initialization. The challenger starts the Setup proto-

col to initialize the environment and generate the key
pair (skp, vkp). He stores the keys, and shares only the
verification key vkp with A.

• Query. A asks the challenger the friend list of a user
idui

. On receipt the answer from C, A runs the Match
algorithm and sends back the result. This process can
be repeated polynomially-many times.

• Challenge. A outputs a user IDs idu and a value hu.
A wins the game if hu matches the encoded value of

idu and he has not already queried E(.) for idu. The output
of game is defined to be 1 in this case.
Definition 3.3 (Privacy). Our common friend match-

ing scheme is private if no PPT adversary A
can win the above privacy game with probabil-
ity better than negligible in the security parame-
ter, i.e., ∀ PPT adversaries A,∃ a negligible
function ν(λ) s. t. : Pr[PrivGame

E(.)
A (λ)=1] ≤ ν(λ).



4. ADS-Based Construction

We now give a lightweight construction suitable for mo-
bile devices. The polynomial-based construction is given in
the appendix. An important assumption is that the network
does not need to be online for this operation to be performed.
It suffices to have the MSN certification on the users’ friend
lists (discussed more in Section 4.3). Moreover, we assume
the users do not trust each other, while the MSN is trusted,
which resembles the real usages.

Once Alice becomes a user of an MSN, the network
assigns her a high-entropy random ID idAlice chosen uni-
formly from a large domain (e.g., {0, 1}128), generates an
empty Merkle hash tree resulting in a root RAlice, signs
the root of tree concatenated with the user ID as σAlice=
Signskp(idAlice||RAlice) to bind the tree to her ID, and
sends the ID, the tree, and the signature σAlice to Alice.

Later, upon forming the friendship connection between
Alice and Carol, the MSN adds (hash of) Carol’s ID into
ADSAlice, and (hash of) Alice’s ID into ADSCarol, signs
the new roots in the same way, and sends the new ADSs and
signatures to the respective users. Note that a user’s tree is
built using hashes of her friends’ IDs. When a user gives her
friend list to another user, the receiving user cannot uncover
IDs of non-common friends supposed that the hash function
is secure. Our construction is given in Figure 2.

First, we discuss the two-party case. Whenever, Alice
and Bob come to a close distance, e.g., both are waiting
for a flight at the airport or traveling in the same train,
their mobile devices check to see if they have any friend
in common. One of the devices, say Alice’s device (it does
not matter which one), starts a common friend matching
protocol and sends her ADS and the respective signature to
the other device. Bob’s device first verifies that the tree and
the signature are both genuine and belong to Alice, and then
runs the matching protocol.

We modify the ADS matching algorithm from [10], as
presented in Algorithm 4.1. Each ADS is traversed only
once, and the algorithm specifies the matching IDs and
generates the proof. Each comparison includes some values
from each ADS, located in the proof in a given order. If it
is started by Alice’s ADS, the values selected from Alice’s
ADS always come before those of Bob’s ADS, separated by
‘:’. The consecutive values belonging to the same ADS are
separated by ‘,’, and ’;’ separates different comparisons.

Assume the encoded friend list of Alice is FA =
{a1, a2, ..., an}, and that of Bob is FB = {b1, b2, ..., bm}.
The algorithm starts by the leftmost leaf nodes in both
ADSs, NodeA and NodeB , and goes on until the end of
one of the ADSs is met (lines 1 and 2 of the Algorithm 4.1).
It first checks if they store the same value (line 3). If this is
the case, it reflects this into the proof (line 4), finds the next
nodes on both ADSs (lines 5 and 16) and goes to the next
round (line 18). Otherwise, it selects the max value between
them (line 7), say b1 on ADSBob, (since there will be no
matching for values less than this value) and searches for b1
on ADSAlice (line 8). If it reaches end of ADSAlice (line 9),
puts the intermediate information of ADSBob up to the end

Algorithm 4.1: Match: common friend matching alg.
Input: Current nodes of ADSAlice and ADSBob: NodeA and

NodeB , initialized by the leftmost nodes of the
corresponding ADSs at the beginning.

Output: The proof: π
1 if NodeA is null OR NodeB is null then

// One ADS reached end.
2 return proof of the remaining part of the other ADS;
3 if NodeA.val = NodeB .val then

// Reflect the matching into the proof.
4 π = NodeA.val + ‘:’ + NodeB .val;
5 NextA = ADSAlice.Next(); // Go ahead.
6 else
7 Find the node with the bigger value, say NodeB ;

//Find matching on ADSAlice.
8 (Next1A, Next2A) = ADSAlice.Next(NodeB .val);
9 if Next1A is null then

//No matching found, end of ADSAlice.
10 π = π + ‘:’ +

NodeB .val, proof of the remaining part ofADSBob;
11 else
12 if Next2A is null then

// Put matching into proof.
13 π = π +Next1A.val + ‘:’ + NodeB .val;

NextA = ADSAlice.Next(); // Go ahead.
14 else
15 π = Next1A.val + ‘,’ + Next2A.val + ‘:’ +

NodeB .val; // No matching.

16 NextB = ADSBob.Next(); // Go ahead.
17 π = π + ‘;’ + Match(NextA, NextB); // Go next round.
18 return π;

into the proof (line 10). If a matching is found on ADSAlice
(line 12), i.e., ∃ ai ∈ ADSAlice s.t. b1 = ai, both values
are inserted into the proof showing a matching: π = ai : b1
(line 13) and it goes to the next round (line 18) after
moving to the next nodes on the ADSs (lines 14 and 17).
Otherwise, the boundary records (the two consecutive values
on ADSAlice that b1 would have been located between them,
i.e., ∃ ai, ai+1 ∈ ADSAlice s.t. ai < b1 < ai+1), together
with b1, are inserted into the proof: π = ai, ai+1 : b1 (line
16). This shows b1 has no matching on ADSAlice. This
process goes on until the end of one ADS is reached, in
which case, all required information up to the end of the
other ADS are also inserted into the proof.

During this process, the algorithm jumps to the next
processing node in many situations. It is a node whose value
is either immediately after ai and bj (on their respective
ADSs) in case of previous matching (i.e., ai = bj), or the
closest value to one of them on the other ADS, otherwise.
If the current and processing nodes are not successive, the
intermediate information required for verifying the ADS by
the other user, will be added to the proof. The algorithm
Next, used to find the processing nodes inside the Algo-
rithm 4.1, serves this goal.

For example, we execute our matching algorithm on
ADSAlice and ADSBob given in Figures 3 and 4, respec-
tively. For a simple presentation, we use the values instead
their hashes. The algorithm goes to the leftmost nodes of



Let A=(Gen,Certify,Verify) be a secure ADS scheme and S=(Gen,Sign,Verify) be a secure signature scheme. Build a
common friend matching scheme CFM=(Setup,Register,Add,Break,Match,Verify) as:
• Setup(1λ):

– The MSN runs k ← A.Gen(1λ) and (sks, vks)← S.Gen(1λ),
– sets skp = sks and vkp = {vks, k}, and shares vkp with all his users.

• Register(u):
– The MSN selects a random ID idu, creates an empty ADS as Lu = A.Certify(vkp.k,‘Create’),
– concatenate the root of tree Ru and idu, and signs the results as σu = S.Signskp(idu||Ru),
– and sends the user ID idu, the tree, and the signature σu to the user.

• Add(skp, vkp, idu1 , idu2 , Lu1 , Lu2):
– The user idu1 sends a friendship request for idu2 to the MSN.
– The MSN relays the request to idu2 and waits for her confirmation.
– Upon receipt, the MSN runs Lu2 .Certify(vkp.k,‘Add||idu1 ’) and Lu1 .Certify(vkp.k,‘Add||idu2 ’),
– signs their updated roots as σ′u1

= S.Signskp(idu1 ||R′u1
) and σ′u2

= S.Signskp(idu2 ||R′u2
), and

– sends (σ′u1
, R′u1

) and (σ′u2
, R′u2

), to u1 and u2, respectively.
• Break(skp, vkp, idu1 , idu2 , Lu1 , Lu2):

– The user idu1 sends a break request for idu2 to the MSN.
– The MSN runs Lu2 .Certify(vkp.k,‘Break||idu1 ’) and Lu1 .Certify(vkp.k,‘Break||idu2 ’),
– signs their updated roots as σ′u1

= S.Signskp(idu1 ||R′u1
) and σ′u2

= S.Signskp(idu2 ||R′u2
), and

– sends (σ′u1
, R′u1

) and (σ′u2
, R′u2

), to u1 and u2, respectively.
• Match(vkp, Lu1 , σu1 , Lu2 , σu2 , . . .):

– All involved users send their friend lists Lui and certifications σui to a user uj .
– uj first runs A.Verify(vkp.k, Lui , null) and S.Verify(vkp.vks, idui ||Rui , σui), then
– runs the Algorithm 4.1 to generate the list of common friends Lcmn and the proof π, and
– sends them to all other involved users.

• Verify(vkp, Lcmn, π):
– Each user verifies the list of common friend, as described later in this section, and
– runs A.Verify(vkp.k, Lui , null) and S.Verify(vkp.vks, idui ||Rui , σui) to verify other users’ lists.
– She outputs accept if both verifications were successful, and reject otherwise.

Figure 2: Construction of our common friend matching scheme.

Figure 3: ADSAlice storing hash of IDs of her friends.

Figure 4: ADSBob storing hash of IDs of his friends.

both ADSs, and observes that 2 < 5. Hence, it looks for
and finds another node storing 5 in ADSAlice. After this
step, the proof looks like π = 2, 5 : 5. Since a matching is
found, it runs ADSAlice.Next(5) and ADSBob.Next(5) to
jump to the following nodes on their respective ADSs. Now,
the current values are 6 and 8, respectively. Since 6 < 8,
the algorithm runs ADSAlice.Next(8) that returns 6 and 11
meaning that 8 does not have a matching on ADSAlice. This
fact should be reflected into the proof: π = 2, 5 : 5 ; 6, 11 :
8. Now it runs ADSBob.Next(8) to go to the following node

on ADSBob, the one who stores 54. Since 11 < 54, and 54
is the last value on ADSBob, the algorithm adds proof of
the remaining parts of ADSAlice and ends, outputting the
proof π = 2, 5 : 5 ; 6, 11 : 8 ; h3, 37, 43 : 54,∞.

As a very small example, it shows the algorithm skips
over the unnecessary nodes and results in an efficient proof.

Since, Bob is running this protocol, he observes that
there is only one matching: h(5). He sends the proof to Alice
who verifies the proof and finds out the matching value(s)
as well. The verification process is illustrated graphically in
Figure 5, which shows how Alice reconstructs the required
parts of the ADSs. Then, she checks whether the root of her
own (reconstructed) ADS matches the locally stored value,
and the root of the other ADS is verified against the received
signature. If both checks passed, she accepts the result, and
rejects otherwise. During this process she realizes that there
is one common value: h(5).

4.1. Generalization of the Algorithm
Existing PSI algorithms require each party to extract the

result (i.e., the common set values) directly that limits their
usage for multi-party settings. If there are n mobile users
around, and all want to find their common friends, they
need O(n) (sequential) rounds of executing the existing PSI
algorithms to find the common friends among all of them.
Our algorithm, on the hand, is easily generalizable for multi-
party case. All parties send their ADSs and signatures to
one party who runs the algorithm on all the ADSs and



Figure 5: Verification. The colored nodes are computed.

distributes the proof to other parties. On receipt, they all
perform verification and extract the common values, if there
are some and the verification was successful.

The matching algorithm is similar to the two-party case,
but only compares more than two values to either see that
all values are equal or find the maximum value among them.
It starts with the leftmost leaf nodes in all ADSs. If they all
store the same value, puts all in the proof. Otherwise selects
the maximum value among them, say b1 on ADSBob, (since
there is no matching for values less than this value) and
searches for b1 on all other ADSs. If a matching is found,
all values are inserted into the proof showing the matching.
Otherwise, the boundary records of all other ADSs, together
with b1, are inserted into the proof. This shows b1 has
no matching on other ADSs. Then, it jumps to the next
processing node on all ADSs and repeats the process.

Figure 6: Carol’s ADS.

With the ADSCarol in Fig-
ure 6, our matching algorithm
goes to the nodes storing 2, 5,
and 1 in ADSAlice, ADSBob,
and ADSCarol, respectively.
Since 5 is the maximum, it
calls ADSAlice.Next(5) and
ADSCarol.Next(5) and gen-

erates the proof as π = 2, 5 : 5 : h′′1 , 5.
Then, it calls ADSAlice.Next(), ADSBob.Next(), and
ADSCarol.Next(), and observes that 7 is the last value in
ADSCarol and 8 is the maximum value. It reflects these in
the proof and exits: π = 2, 5 : 5 : h′′1 , 5 ; h2, h6 : 8, h′2 : 7.
Then, the party running the algorithm distributes the proof
to the other parties for verification. The proof shows there
is only one common value h(5) among these three ADSs.

4.2. Security Proof
Theorem 4.1. Our common friend matching scheme is

authentic according to Definition 3.2 if the underlying
Merkle hash tree and signature scheme are secure.

Proof 4.1. We reduce security of our scheme to that of
the underlying building blocks. If a PPT adversary A
wins security game of our scheme with non-negligible

probability, we use it to construct another PPT algorithm
B who breaks security of either the Merkle hash tree or
the signature scheme, with non-negligible probability.
B acts as the adversary in the security games with
the Merkle hash tree challenger CM and the signature
scheme challenger CS . In parallel, B plays the role of
challenger in our game with A. Since our matching
process is asymmetric, i.e., one user runs the matching
algorithm and sends the result to the other user(s) for
verification, we consider two scenarios.
First scenario: the user who runs the matching
algorithm is malicious, i.e., she may provide a fake
friend list or perform the matching incorrectly.
Setup. B receives a key k from CM and a verification
key pk from CS , and shares them with A. A sends him
a request to execute an algorithm:
• For a Register algorithm, the challenger assigns him

a random ID idA, asks CM build an empty Merkle hash
tree, asks CS to sign root of the tree, and sends the ID,
the tree, and the signature to the adversary.

• For an Add (Break) algorithm, he gives a user ID idu
and asks B to add (remove) it to (from) his friend list.
B asks CM add (remove) idu into (from) the friend list
of the adversary and idA into (from) the friend list of
idu, asks CS to sign roots of the respective modified
Merkle hash trees, and sends the signature together
with the updated ADS to the adversary. B also keeps
local copies of all ADSs that is transparent to A.

• For a Match algorithm, he requests the friend list of
a user idu, computes the list of common friends, and
returns back the result accompanied with the proof. B
verifies the result and notifies A about the result. These
two steps can be done polynomially-many times.

Challenge. The adversary specifies a user idu, asks B
the friend list of idu, computes the set of common
friends between himself and idu, and gives the result and
the proof to B who runs the Verify algorithm. If B
accepts A’s answer with probability p (which means that
the root of ADSA matches the given signature), while
the obtained set of common friends disagrees with the
local knowledge, either of the following cases happens:
• There are two different ADSs with the same root value.

(This includes the case where the matching algorithm
is done wrong.) B can use these two ADSs to break
security of the Merkle hash tree with probability p.

• The root of A’s ADS reconstructed during verification
does not match the local knowledge, but the signature
is accepted. This means that A has forged a signature
on a modified (root) value. B can use this fact to break
security of the signature scheme with probability p.

Since both Merkle hash tree and signature scheme are se-
cure by assumption, p must be negligible, which means
that A has negligible chance to pass B’s verification and
win the game. Hence, our scheme is secure in this regard
if the underlying building blocks are secure.

Second scenario: the user who sends her friend list
is malicious, i.e., she may provide a fake friend list. This



is very similar to the first scenario except that the adversary
only populates his list (with the help of the challenger) and
asks the challenger to run the matching algorithm. Now,
the challenger verifies the input given by the adversary
before running the matching protocol. As above, there are
two possible cases for the adversary’s misbehavior, each
enabling the challenger to break security of either of the
underlying building blocks. However, since they are both se-
cure, the adversary has negligible chance of breaking them.
As a result, he cannot break security of our scheme with
probability better than negligible in the security parameter,
confirming again our scheme is authentic.
Theorem 4.2. Our common friend matching scheme is

private according to Definition 3.3 supposed that the
underlying hash function is preimage resistant.

Proof 4.2. We reduce privacy of our scheme to the security
of the underlying hash function. (The adversary has
access to the hash function used in the Merkle hash tree.)
If a PPT adversary A wins privacy game of our scheme
with non-negligible probability, we use it to construct an-
other PPT algorithm B who breaks preimage resistance
of the hash function, with non-negligible probability. B
acts as the challenger in the privacy game with A, and
simultaneously, plays the role of server in the security
games with the hash function challenger CH .

Setup. CH gives description of a hash function h(.) to B
who shares it with A.

Query. A requests the friend list of a user idui
. B asks CH

a list (of a given size) of hash values, builds a Merkle
hash tree over these values, and sends it to A. A gives
back a list of common friends and the proof. This step
can be done polynomially-many times.

Challenge. A outputs a user ID idu not in his own friend
list, and a hash value hu given already by CH . B relays
them to CH . A wins if hu = h(idu).

If A wins with probability p, B also wins with the same
probability. Since h(.) is preimage resistant by assump-
tion, p should be negligible, i.e., A has negligible chance
of finding such a user ID. Hence, our scheme is private
if the underlying hash function is preimage resistant.

4.3. Discussion

We discuss some issues about our scheme in real usage.
• A malicious user can regularly (legitimately, by asking

the server) add new friends into her friend list and try to
learn more about the other users. This is a general prob-
lem in the existing protocols and schemes. However,
the MSN can easily detect and prevent such activities.
Indeed, the MSN can put a reasonable upper bound
on the number of friend addition/removal activities per
day, or even on the maximum number of friends a user
can acquire through the network.

• Our scheme relies on the MSN certificates to perform
offline matchings. This makes simple replay attacks
possible. Again, this is a general problem and is not
special to our scheme. For example, Nagy et al. [21]

also refreshes users’ capabilities periodically. A ma-
licious user can participate with an outdated certified
friend list in a matching algorithm run. This can be
prevented using timestamps. The MSN adds a times-
tamp to the signatures showing the time the list is
signed. This approach has a validity window for the
signatures, during which a malicious user can still
perform replay attacks. However, combined with the
previous observation and the fact that the user checks
for a lower bound on the number of common friends
to accept a friendship request, this attack will not have
significant implications.

• A number of colluding malicious users can learn more
about the friend list of a user ui. Whenever a malicious
user receives the (encoded) friend list of ui for match-
ing, she can share it with other users to extract more
friend IDs. This is also a general problem in most of the
existing schemes to make comparison against different
users possible. However, we do not consider this as a
serious attack as the other users would have been given
the list upon request. The colluding users can uncover
at most the union of their common friends with ui.
The important fact is that they cannot go beyond that
even though the are colluding. (This is the result of
privacy-preservingness of our scheme.)

5. Performance Analysis
We implemented a prototype of our scheme and eval-

uated its performance on a Samsung Galaxy S1 mobile
phone having a Cortex-A8 chip and 512 MB RAM, running
Android 2.1. We employ SHA1 hash function for generating
160-bit random IDs for users. Then, a Merkle hash tree is
built over the set of friend IDs assigned to each user. Finally,
the root value of each tree is signed using an RSA scheme
with 2048 modulus and 160-bit exponent. (These are the
operations that supposed to be done by the network.)

For each experiment, we generate two Merkle hash trees
representing two users, apply our common friend matching
algorithm on them, and measure the times. We perform all
experiments on only one device, and exclude the commu-
nication time. The results are given in Table 2. The values
are averages of 10 runs.

We repeat our experiments with two users with different
number of total and common friends. The user IDs are
generated randomly (outputs of the hash function), but we
select some of them as common and put them on both lists.

This table shows that it takes up to 1.1 s for friend
matching and a similar time for verification. Therefore, two
devices can run our protocol and find their common friends
in at most 2.2 s, in the above settings. Moreover, it shows
that the number of common friends has more effect on
the matching and verification times than the total number
of friends (in our settings). Note that we have done our
experiments on a regular device. Thus, we expect much
better performance on recent mobile phone devices.

For the case with input size 100 and intersection size
10, the scheme of Nagy et al. [21] takes ≈ 652 ms while



TABLE 2: Friend matching and verification times. (Fu represents
the list of friends of a user u.)

|FA| |FB | |Common| Time (ms)
Matching Verification

100 200
10 227 182
20 431 353
50 662 607

100 500
10 269 226
20 493 428
50 747 719

200 1000

10 305 259
20 483 411
50 794 742
100 1143 1056

ours takes 227 ms, showing ≈ 3X better performance. The
same happens in similar scenarios, e.g., for input sizes 200.
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Appendix

1. Polynomial-Based Construction
We now give a construction based on polynomial rep-

resentation suitable for the multi-party settings. Although
the ADS-based protocol from Section 4 has higher practical
impact even for constrained devices, this protocol is general-
izable and widely applicable. We follow similar model from
Section 4, where each user is assigned a unique high-entropy
ID from a large domain upon registration. These IDs are then
represented as the roots of the polynomial and exchanged
upon friendship connection agreement among two users.
For instance, Alice and Bob learn their IDs whenever they
become friends. Similarly, we consider users to be malicious
and the MSN to be trusted, as it already contains information
about the connections. However, this computation can be
performed offline and outsourced to external parties without
leaking privacy of the users.

Protocol. Each MSN user, upon registration and friend-
ship acquaintances composes their friendship set S as a
polynomial, where each member of S = {sj}1≤j≤k is repre-
sented as a root of f ∈ R[x], such that f(x) =

∏
1≤j≤k(x−

sj). For simplicity, we consider the intersection of friend



Social network
Alice(FA) Bob(FB)
Init: Init:
FA = {FA

1 , . . . , F
A
n } FB = {FB

1 , . . . , F
B
v }

r ←r Rn[x] w ←r Rv [x]

(Pre-compute) (Pre-compute)
f(x)←poly FA, s.t., f(FA

i ∈ FA) = 0 g(x)←poly FB, s.t., f(FB
i ∈ FB) = 0

|FA| = deg(f) = n |FB| = deg(g) = v

Interaction: Interaction:
∀i∈f(i),0≥i≥n : θi ← Encpk(f(i)) ∀j∈g(j),0≥j≥v : ωj ← Encpk(f(j))
Θ = {θ0, . . . , θn} Ω = {ω0, . . . , ωv}

Θ∗{Encpk(r)}
−−−−−−−−−−−−−→

Ω∗{Encpk(w)}
←−−−−−−−−−−−−−

FA ∩ FB = Θ ∗ {Encpk(r)}+ Ω ∗ {Encpk(w)}

Figure 7: Two-party common friends matching. A and B learn only the intersection.

lists among two parties, Alice and Bob, with respective sets
of friends FA = {a1, a2, ..., an}, and FB = {b1, b2, ..., bm},
as depicted in Figure 7. The extension to multi-party settings
is straightforward so that each party broadcasts the masked
and encrypted set with all the other parties.

Hence, the computation of intersection of two sets FA∩
FB represented as two polynomials f and g is the same
as deriving common roots, which is given by the addition
property, i.e., f+g. In order to produce this without learning
extra information, we need to randomize the polynomials.

Let f, g be the polynomial representation of FA and
FB respectively, and deg(f) ≥ deg(g). The intersection is
computed using two masking random polynomials r and
w as f ∗ r + g ∗ w, such that r, w ←r Rdeg(f)[x] with
coefficients chosen at random, and r(x) =

∑deg(f)
i=0 rix

i and
w(x) =

∑deg(f)
i=0 wix

i. This has been proposed by Kissner
and Song [18], but they require both sets to have the exact
same size in their protocol. In order to generalize it, we
require r and w to have degree equal to the maximum de-
gree specified by the MSN2, and be calculated individually
by each user. Otherwise, users with different numbers of
friends will polynomials of different degree. The random
polynomials r and w convert f and g to a normalized degree,
such that deg(f ∗ r) = deg(g ∗w). Upon registration, Alice
generates a new r ←r Rn[x], such that deg(r) = α, where
α is the maximum number of friends of a user in MSN.

Let R[x] be a commutative ring with unity and an R-
module G where r · g = gr for r ∈ G∨ g ∈ G. In addition,
let Encpk : R→ G be an additive homomorphic public key
encryption. The following properties hold for all a, b ∈ R:

Encpk(a+ b) = Encpk(a) · Encpk(b)
Encpk(a · b) = Encpk(a)

b

Given the polynomials f and g with encrypted represen-
tation Encpk(f(x)) = Encpk(f(0)), . . . , Encpk(f(deg(f))),
the following properties also hold:

Encpk((f + g)(x)) = Encpk(f(x)) · Encpk(g(x))
Encpk((f · g)(x)) = Encpk(f(x))

g(x)

2. We assume a fixed normalized degree size in the MSN.

In the end of the protocol, each user learns the resulting
FA∩FB (or Fu0∩Fu1∩. . .∩Fun for multi-party settings with
n users), without learning extra user IDs with overwhelming
probability. In Figure 7 users perform the intersection using
homomorphic additive encryption under the pk of the MSN,
in order to protect the the communication, using the MSN
as a trusted computation party. For instance, Alice and Bob
which have both Carol and Dave on their friends list will
just learn that two users, i.e., the intersection, at the end of
the protocol and not others. The MSN acts as a TTP, and by
assumption he already has knowledge on the connections.
The protocol could be generalized to decentralized settings
by sharing sk, pk and assuming that there are at least two
honest users [18]. Although in some scenarios the MSN
may already know the intersection of the sets, on cases
that the sets are private to the MSN the masking part
provides information theoretical security for f ∗ r such that
r is a uniform random polynomial. Note that the random
polynomials r and w are required to be long lived as if Alice
(or Bob) uses a new r′ 6= r, then gcd(f ∗ r, f ∗ r′) = f .

Security This protocol is private and secure in the
honest-but-curious model. Each player learns the intersec-
tion without learning any extra user ID not in the intersec-
tion, assuming that the additively homomorphic encryption
is semantically secure. Therefore, on cases the MSN does
not know F of each party, it will only learn the masked
value and the end intersection.

The proof of correctness is an extension of the proof in
Lemma 2 [18], where deg(f) 6= deg(g). The extension to
this extra possibility is straightforward. Normalizing each
polynomial to degree α introduces false positives ζ ∈ FA ∩
FB, i.e., extra roots of the resulting polynomial. However,
the probability that ζ ∈ FA ∩FB is true is negligible in the
number of MSN users. The proof that the masked element
is secure follows from Song construction [18].
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