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Abstract—When applied to short-term energy consumption
forecasting, the federated learning framework allows for the
creation of a predictive model without sharing raw data. There is
a limit to the accuracy achieved by standard federated learning
due to the heterogeneity of the individual clients’ data, especially
in the case of electricity data, where prediction of peak demand
is a challenge. A set of clustering techniques has been explored
in the literature to improve prediction quality while maintaining
user privacy. These studies have mainly been conducted using
sets of clients with similar attributes that may not reflect real-
world consumer diversity. This paper explores, implements and
compares these clustering techniques for privacy-preserving load
forecasting on a representative electricity consumption dataset.
The experimental results demonstrate the effects of electricity
consumption heterogeneity on federated forecasting and a non-
representative sample’s impact on load forecasting.

Index Terms—Load Forecasting, Federated Learning, Cluster-
ing Methods.

I. INTRODUCTION

Accurate load forecasting is necessary for the massive
deployment of renewable energy sources. It is essential to
balance renewable power generation and optimise power stor-
age within the grid, and for advanced smart grid applications
such as a peer-to-peer energy trading. Residential consumption
currently represents 23% of such energy demand [1], but
is the most heterogeneous. The data streams provided by
smart meters will allow for more accurate usage reporting and
consumption forecasting.

There is currently some resistance to the adoption of smart
meters, with data privacy and security cited as one of the main
reasons for the lack of uptake [2]. Hence, methods for fore-
casting short-term individual households’ energy consumption
should treat metering data confidentially and securely. The
methods should not expose raw energy consumption data to
any system that is not controlled by the client.

However, the datasets held by each household are not large
enough to create a well-trained model for the household
without data from other households. Centralised methods to
create more general models have to be used while maintaining
privacy. Federated learning (FL) is a method of training a
global model without sharing the clients’ raw data with a
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central entity. FL for short term load forecasting (less than 1
day) has mainly been performed on clustered datasets, either
by geographical location or other properties. Experiments
performed on these datasets produce results specific to these
scenarios but may not generalise to a more diverse population.

To evaluate the effect of clustering used in energy consump-
tion prediction models based on FL, this work has made the
following two main contributions:

« It implements and evaluates a long short-term memory
(LSTM) model in predicting power consumption in a
centralised (using raw data) and a FL framework.

« It implements and evaluates the effect of different cluster-
ing methods on improving the accuracy of the prediction
models.

A range of methods have been used for forecasting en-
ergy consumption, from simple moving averages [3] to deep
learning approaches, such as LSTM models [4], with the
latter achieving better results. Centralised learning (CL) is
usually used when applying an LSTM model to data from
multiple clients. However model performance decreases when
the clients’ data is not independent and identically distributed
(non-1ID). To solve this problem, clustering methods that
group similar clients together have been proposed [5]. CL also
introduces privacy issues. FL. addresses these issues and has
been applied to several applications from text prediction [6] to
handwriting recognition [7], producing comparable results to
CL while protecting clients’ raw data. It has also been applied
to energy forecasting in a range of works such as [8] for a
block of offices, or [9] for 200 detached homes in Texas.
Clustering has also been introduced in an FL setting [10], [11].
FL clustering been applied to a dataset of homes in London
with LSTM [12], and produced better results than individual
models. In addition to clustering on the weight updates, other
methods of privacy-preserving clustering have been applied,
including clustering on hyperparameters of individual models
after hyperparameter optimisation [13] and house properties
with OPTICS [14].

The rest of this paper is organised as follows. Section II
lays out some background on learning, data and clustering.
Section III describes our experimental datasets. Section IV
performs experiments using different clustering methods and
provides a rigorous comparison between them. Section V
concludes the work and sets future research directions.
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(a) Centralised learning overview. (b) Federated learning overview.

Fig. 1: Learning models.

II. BACKGROUND
A. Long Short Term Memory Networks

Long Short Term Memory (LSTM) networks are a type of
Recurrent Neural Networks (RNN) developed to address the
vanishing gradient problem [15]. They are a type of gated
RNN that can regulate what is remembered by the network.
They work by replacing the hidden layer in the standard RNN
model with an LSTM cell and adding an extra connection
between the cell blocks the cell state. The cell state carries
extra information along with the hidden state. At each time
step, the cell can choose to read from, write to or reset the
hidden state using a gating mechanism. This composition of
the cell state allows the history information to flow for a more
extended period with no risk of vanishing gradients. It can
decide what to remember within the cell state and what to
forget, instead of holding everything in the network.

B. Learning Styles

1) Centralised Learning (CL): CL is a method to create
a centralised model using data held on edge devices such as
smart meters (see Fig. la). It is performed for two reasons.
Firstly, the model has the potential to make predictions on
homogeneous systems whose data has not been used within the
training process. Secondly, using information from multiple
sources allows for better models to be built. This is due to
different system data from different scenarios exposing the
model to a richer data source. Although CL allows to create
better models that have had exposure to a larger number of
cases, it raises privacy concerns due to the sharing of raw data
with the central server.

2) Federated Learning (FL): FL is a collaborative learning
technique that allows the training of a centralised model on
data held across multiple edge devices by sharing only gradient
updates, as shown in Fig. 1b. Compared to standard machine
learning techniques, FL decouples the raw data and the training
process. This feature ensures that no other entity can directly
extract sensitive information from raw data. It also can reduce
substantially the amount of communication needed to train
the model in comparison to a standard CL. This decoupling
provides security benefits, but in some cases the original
data can be reverse-engineered from the weight updates. To
mitigate this risk, FL can be combined with other security
techniques such as differential privacy [16] and homomorphic
encryption [17].

Cluster 1
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Average of all clients
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on data

Optimal location of weights

Fig. 2: Federated averaging of non-IID clients in clusters.

C. Non-Independent and Identically Distributed Data

Within a statistical model for machine learning, there are
two samples when working with multiple clients’ data. There
is i ~ (), the distribution of available clients, and accessing a
data point for an individual client (x,y) ~ P;(z,y) where z
is the features and y is the labels. The datasets of two clients
¢ and j are said to be non-IID if for the same set of inputs,
the two datasets yield differently distributed outputs.

During training, the difference in the data distributions will
cause the model updates to converge to an average location
between the optimal weight values. This effect cancels out the
accuracy gained by using larger datasets. Fig. 2 represents
this effect. It shows that although having more data may
improve the model if the data is non-IID, the model created by
combining the data may be worse than the individual models.

D. Clustering

Clustering is the classification of data points due to certain
similarities and is a common unsupervised machine learning
task. A standard method for performing clustering is k-means
clustering [18]. It defines the number of clusters k, then places
and updates a centroid in the centre of each cluster and assigns
the data points according to their distance from the centroids.

III. DATA EXPERIMENTATION
A. Dataset

The dataset used is The Smart Metering Customer Be-
haviour Trials which was collected between 2009 and 2010
with over 5000 Irish homes and businesses participating [19].
It contained 6445 clients: 4225 residential, 285 SME and 1735
other. The clients with a full set of data were divided into:

Clustered dataset: This set contains 30 of the most similar
clients in terms of energy consumption clustered by various
methods. It is the most homogeneous dataset, and thus a best-
case scenario, as the clients have the most similar profiles,
hence causing the least problems when used for CL.

Representative dataset: This set contains 30 of the clients
that represent the dataset as a whole for training and testing.
This was achieved by stratified random sampling from the
main dataset, ensuring that the distribution of residential, com-
mercial and other clients was the same between the selected
30 clients and the full dataset. This helps to ensure external
validity to the work as the clients are selected from a large
geographical location.



TABLE I: Centralised vs individual models.

Training Data RMSE Training time per epoch / per house
Single House 0.163467 10.00 / 10.00
30 Houses 0.138887 331.00 / 10.10
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Fig. 3: Example comparison prediction.

B. Model Selection and Evaluation Metrics

An LSTM model has been selected due to its common
usage for time series forecasting. To compare models, root
mean square error (RMSE) and mean absolute percentage error
(MAPE) are used. RMSE gives a good measure to compare
different models/frameworks that make predictions on data
from similar distributions. MAPE gives a better comparison
between different models/frameworks, making predictions on
different datasets due to the error being scaled to true value.

IV. EVALUATION
A. Centralised vs Individual Training

An experiment comparing individual client models and a
centralised model was performed, aiming to validate that
predictions could benefit from the aggregation of data/models.
The data used was the clustered dataset. The clustering step
gives an improved selection of clients, minimising the impact
of the aggregation on non-IID datasets. An LSTM model was
used with hyperparameters selected from an LSTM electrical
load forecasting model [20]. The data was split into 80:20
train:test validation. The model predicts the next six hours of
consumption using the data from the previous three days.

The results in Table I show an 8% increase in the model’s
accuracy when training is completed over the clustered dataset
compared to the single client model. This comes with longer
per epoch but similar per epoch per client training time. The
improvement in accuracy, however, only holds if clients have
similar power consumption profiles. Such similarity would
not be present within a representative dataset, in which case
clustering could help. Example predictions are shown in Fig. 3.

B. The Effect of Clustering

1) Clustering on Raw Data: Clients are clustered into sim-
ilar groups on raw data, which comes with privacy risks. An
initial round of k-means clustering was performed using k = 5
and data from 6167 clients. The largest cluster (5761 clients)
was then clustered too, producing three smaller clusters. In
total, data was grouped into seven clusters, with a number of
clients within each cluster, ranging from 54 to 2333.

TABLE II: RMSE for a single model and per-cluster models.

Framework RMSE
Single model 0.56440
Model for each cluster  0.52690
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Fig. 4: Example SME vs Residential consumption data.

A comparison was performed between a framework that
creates a single model for all clients and one that creates a
model for each cluster. Thirty clients were selected randomly
from the complete dataset for model training and evaluation.
The task was to predict the next 30 minutes of power consump-
tion using the previous 22 half-hour readings. This task was
selected as it trains faster than the 6-hour future prediction. For
the non-clustered framework, an LSTM model was trained on
the data, and for the clustered framework, an individual model
was trained for each cluster with the same clients.

RMSE was used for the comparison. To create a combined
RMSE for the clusters T.,,se the equation below was used:

ZN Crmse XClount

Trmse = n=0 NNtOtal (1)

where C7. .. is the RMSE for cluster n, C7 .., — number of
clients from the sample in cluster n, Nyotq; — total number of
sample datasets and N — total number of clusters. This gives
a balanced weighting to each client in the overall RMSE score
reducing the impact of a good score from a cluster with only
a few clients compared to a score that finds an average.

The comparison results, shown in Table II, indicate a 7.1%
decrease in RMSE between the single model and the clustered
framework, from 0.56440 to 0.52690.

2) Clustering on Client Types: Factors about a client, such
as type (residential, SME), property type (house, apartment)
and number of occupants, play a significant role in its energy
consumption, thus making these data an ideal candidate to
perform clustering upon. The Irish dataset [19] provides extra
information about the clients included in the dataset, from their
tariff and property allocation to the number of occupants.

Initially clustering was performed between the groups resi-
dential, SME and other. Example consumption data from four
clients, two residential and two SME, is shown in Fig. 4. On
average, the SME has higher power consumption and a more
regular consumption pattern. The heterogeneity between the
different groups makes them ideal candidates for clustering.

Fifteen clients from each category (residential, SME, other)
were randomly sampled to create a subset for training. Four



TABLE III: Results from clustering based on client types.

(a) All types of clients. (b) Residential types of clients.

Model RMSE Model RMSE

Residential 0.5336634 Apartment 0.4350906
SME 1.5565122 Terrace 0.5415721
Other 0.8768399 Detached 0.7925013
Clusters average  0.9890052 Clusters average  0.5897213
Combined 1.0665991 Combined 0.6314942

different federated models were made from this sample set
of clients, one for each of the client property allocations and
one containing all of the clients within the sample. The data in
each cluster is used to train an LSTM model to predict the next
six hours of data using the last three days of measurements.
To ensure fair allocation of training resources per cluster, the
number of training rounds for each cluster was proportional
to the number of clients within the cluster. Residential, SME
and other each performed 100 rounds and the combined 300
rounds. These models were then compared using RMSE.

The accuracy of the clustered model improved by 7.2%
compared to the single combined model (see Table Illa),
demonstrating that this clustering method improves forecasting
accuracy without sharing users’ private data. Further improve-
ments may be possible by performing further clustering on
other building features such as type, insulation and number
of occupants. The same experiment was performed with the
samples being taken from the residential clients and the
clusters being apartments, terrace houses and detached houses.
There is an improvement of 6.6% in RMSE (see Table IIIb),
which is a significant improvement and shows that further
clustering can improve the forecasting ability of the models.

3) Clustering on Weight Updates: FL works by an iterative
process where the central server broadcasts a model to clients,
who update the model by using their raw data for training and
return only weight updates, which then the server aggregates
to create a new model. Clients can also be clustered based
on weight updates. The central server performs the clustering
upon receiving the weight updates to determine how the
clients are allocated to different clusters. Then this clustering
information is used to create cluster-specific models.

Thirty random clients were selected from the testing dataset.
LSTM model was used to predict the next six hours from
the previous three days of data. Five rounds of training were
performed and the client weights were used for k-means clus-
tering with four clusters and 40 rounds of training performed
for each cluster. Table IV shows the results of our experiment.
Compared to the federated model with no clustering, the model
with clustered brings 9.2% improvement. This result may be
further improved with parameter optimisation such as number
of clusters/rounds of training and different distance metrics.

C. Model Comparison

Clustering methods have shown that forecasting accuracy of
an LSTM model can be improved beyond individual models
within a privacy-preserving framework. However, these results

TABLE IV: No clustering vs clustering on weight updates.

Model RMSE
Federated no clustering 0.736478
Federated clustering on weight updates ~ 0.673984

TABLE V: Results of predictions from different frameworks.

Model RMSE MAPE
Individual 0.562207  67.44599
Federated no clustering 0.648050  78.63596
Federated allocation clustering 0.604902  69.92027
Federated weight update clustering  0.599697  75.14829

have been produced for clients who have similar features. Next
we evaluate the effect of these clustering methods on datasets
that are representative of the whole population. We compare
four methods of conducting energy forecasting, aiming to find
a trade-off between model accuracy and privacy protection.

« Individual: A separate model trained for each client.

o Federated no clustering: A single model for all clients
trained using FL.

o Federated allocation clustering: Clients are clustered for
Residential/SME/other; each cluster is trained using FL.

o Federated weight update clustering: Clients are clustered
on weight updates. Five rounds of training are performed
before clients are clustered into five clusters and the rest
of the time is spent training using FL.

The frameworks are used to produce LSTM models that use
the 30-minute data from the last three days to predict the next
six hours of data at a 30-minute interval. To ensure fairness,
each model is given the same training epochs on the same
hardware with RMSE as the loss function. The data is split
into an 80:20 test: train split with the models being compared
using RMSE and MAPE metrics.

When comparing the models with RMSE, FL with no clus-
tering performs the worst, and the individual model performs
the best (see Table V). This shows that the heterogeneity
of the different client’s data outweighs the benefits from the
extra data, contrary to findings from the experiment looking
at centralised learning vs individual learning. The clustering
methods improve the prediction accuracy by 6.4% for the
clustering on client property type allocation and by 7.5% when
clustering on the weight updates. These results are similar to
those obtained in earlier experiments.

Fig. 5 shows example predictions of two clients, a res-
idential (Fig. 5a) and an SME (Fig. 5b), which highlight
the strengths and weaknesses of the different models. As the
residential clients dominated the majority of the dataset, the
majority of the models (Fig. 5a) fit the general trend of the data
but do not perform well when predicting peaks. Predictions of
a client SME (Fig. 5b) show the effects of heterogeneous data
and the advantages of clustering. As the client is an SME, it
has a vastly different consumption distribution from the rest of
the clients. This is reflected in the poor predictive performance
of the non clustered federated model. This shows the effect of
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Fig. 5: Example predictions of client power consumption.

non-IID. The poor performance is due to the model training
being dominated by data from different distributions. The
models that use clustering and the single model have a better
prediction accuracy as the training is performed on data with
a similar distribution to the client or has a higher proportion
of data from the distribution within the training dataset.

V. CONCLUSIONS AND FUTURE WORK

Our work has shown that for clients with similar power
consumption, better forecasting models can be produced by
creating a central model. This model can be trained in a
privacy-preserving distributed environment using federated
learning coupled with privacy-preserving clustering techniques
to improve the performance of the models.

Furthermore, a representative dataset of a whole population
was compiled to compare the models. On such diverse dataset,
the performance of the individual models was better than any
of the centralised methods. Nevertheless, clustering the models
on both building types and weight updates did improve the
performance compared to the non-clustered federated learning
framework. Although this reduces the value of federated
learning for consumption forecasting, it provides a robust
method for new clients to be introduced into the system
without requiring a backlog of data from them.

Future research includes deployment of privacy-enhancing
techniques to protect client weight updates and use of ad-
vanced clustering techniques.

REFERENCES

[1] 1. IEA, “World energy statistics and balances, iea,” France, 2019.

[2] N. Balta-Ozkan, O. Amerighi, and B. Boteler, “A comparison of
consumer perceptions towards smart homes in the UK, Germany and
Italy: reflections for policy and future research,” Technology Analysis &
Strategic Management, vol. 26, no. 10, pp. 1176-1195, 2014.

C. Yuan, S. Liu, and Z. Fang, “Comparison of China’s primary energy
consumption forecasting by using ARIMA model and GM (1, 1) model,”
Energy, vol. 100, pp. 384-390, 2016.

W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on Istm recurrent neural network,”
IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841-851, 2017.

(3]

(4]

[5] K. Bandara, C. Bergmeir, and S. Smyl, “Forecasting across time series
databases using recurrent neural networks on groups of similar series:
A clustering approach,” Expert systems with applications, vol. 140, p.
112896, 2020.

A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.
M. Chen, N. Shlezinger, H. V. Poor, Y. C. Eldar, and S. Cui,
“Communication-efficient federated learning,” Proceedings of the Na-
tional Academy of Sciences, vol. 118, no. 17, 2021.

J. Li, C. Zhang, Y. Zhao, W. Qiu, Q. Chen, and X. Zhang, “Feder-
ated learning-based short-term building energy consumption prediction
method for solving the data silos problem,” in Building Simulation,
vol. 15, no. 6. Springer, 2022, pp. 1145-1159.

Y. M. Saputra, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, M. D.
Mueck, and S. Srikanteswara, “Energy demand prediction with federated
learning for electric vehicle networks,” in GLOBECOM, 2019, pp. 1-6.
C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical
clustering of local updates to improve training on non-iid data,” in Int.
Joint Conf. on Neural Networks (IJCNN). 1EEE, 2020, pp. 1-9.

F. Sattler, S. Wiedemann, K.-R. Miiller, and W. Samek, ‘“Robust and
communication-efficient federated learning from non-iid data,” IEEE
Trans. on NNLS, vol. 31, no. 9, pp. 3400-3413, 2019.

C. Briggs, Z. Fan, and P. Andras, “Federated learning for short-term
residential energy demand forecasting,” arXiv:2105.13325, 2021.

N. Gholizadeh and P. Musilek, “Federated learning with hyperparameter-
based clustering for electrical load forecasting,” Internet of Things,
vol. 17, p. 100470, 2022.

Y. L. Tun, K. Thar, C. M. Thwal, and C. S. Hong, “Federated learning
based energy demand prediction with clustered aggregation,” in Int.
Conf. on Big Data and Smart Computing. 1EEE, 2021, pp. 164-167.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek,
and H. V. Poor, “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3454-3469, 2020.

C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
USENIX Annual Technical Conf. (USENIX ATC 20), 2020, pp. 493-506.
A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451-461, 2003.
“Home, irish social science data archive.”” [Online]. Available:
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/

S. Bouktif, A. Fiaz, A. Ouni, and M. A. Serhani, “Multi-sequence
Istm-rnn deep learning and metaheuristics for electric load forecasting,”
Energies, vol. 13, no. 2, p. 391, 2020.

(6]

(7]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]



