
Privacy Preserving Billing in Local Energy Markets
with Imperfect Bid-Offer Fulfillment

Andrei Hutu∗ and Mustafa A. Mustafa∗†
∗Department of Computer Science, The University of Manchester, UK and †COSIC, KU Leuven, Belgium

Email: andrei.hutu@student.manchester.ac.uk, mustafa.mustafa@manchester.ac.uk

Abstract—This paper proposes a novel privacy-preserving
billing and settlements protocol, PPBSP, for use in local energy
markets with imperfect bid-offer fulfillment, which only uses
homomorphically encrypted versions of the users’ half-hourly
consumption data. PPBSP also supports various cost-sharing
mechanisms among market participants, including two new and
improved methods of proportionally redistributing the cost of
maintaining the balance of the grid in a fair manner. An informal
privacy analysis is performed, highlighting the privacy-enhancing
characteristics of the protocol, which include metering data
and bill confidentiality. PPBSP is also evaluated in terms of
computation cost and communication overhead, demonstrating
its efficiency and feasibility for markets with varying sizes.

Index Terms—Billing, Privacy, Local Energy Market

I. INTRODUCTION

A peer-to-peer (P2P) energy market enables individuals to
trade electricity with each other, leading to a more efficient
and flexible energy market [1]. It leads to better prices for con-
sumers and can improve the local supply-demand balance [2].

Users are required to submit bids/offers regarding their
predicted energy demand/supply during a specific period (e.g.
30 minutes) ahead of time, using historical load data [3],
weather forecasts [4], etc. Although accurate, it is unlikely
for any algorithm to predict the exact demand/supply of a
household, as unexpected shortages/surpluses of energy are
inevitable. This additional demand/supply represents the devi-
ation between the user’s commitments at the P2P market (their
bid/offer) and their actual demand/supply during that period.
Together, these deviations can affect the efficient operation of
the grid and increase its balancing cost [5].

Moreover, to enable the calculation and settlement of bills
and rewards for users participating in the P2P market, their
fine-grained meter readings need to be communicated to other
market participants. Since this type of data contains sensitive
information concerning household residents [6], this might
lead to user discrimination and profiling [7]. Therefore, the
need arises for solutions working on a protected version of
users’ sensitive data, including the energy volume committed
to the market and the corresponding individual deviation.

Although privacy-enhancing solutions for billing in P2P
energy markets have already been proposed, using a symmetric
homomorphic encryption scheme [8] or multi-party computa-
tion [9], [10], none of them takes into account the possible

This work was supported by EPSRC through EnnCore [EP/T026995/1] and
by the Flemish Government through FWO-SBO SNIPPET [S007619].

differences between the real meter readings and the volume
each user committed to trade. The first solution with imperfect
bid-offer fulfillment, capable of bill adjustments respective to
individual deviations, was proposed in [11], which accom-
plishes the privacy-enhanced billing process using a partially
homomorphic cryptosystem. However, the billing model pre-
sented only considers individual deviations separately from
each other, thus inter-supplier aggregation of deviations is not
supported. Recently, several billing models for P2P energy
markets which take into account individual deviations have
been proposed [12], but they do not protect users’ privacy.

To address these limitations, we propose a novel privacy-
preserving billing and settlements protocol (PPBSP) for P2P
energy markets with imperfect bid-offer fulfillment. More
specifically, the novel contributions of this work are threefold:

• We designed a novel privacy-protecting protocol, PPBSP,
which uses Paillier encryption scheme to calculate and
settle bills in P2P markets, taking into account each user’s
individual deviation from the committed volumes and
supporting fair splitting of their accompanying costs.

• We improved two billing models from [12] by adding a
proportional redistribution of the costs incurred for main-
taining the grid’s balance in the presence of individual
deviations, leading to a more fair and intuitive calculation
of bills and compensations for P2P market participants.

• We evaluated the performance of PPBSP in terms of its
computational and communication costs, both in theory
and in practice. The entire codebase is publicly hosted at
https://github.com/Anndrey24/Privacy Preserving Algo.

II. PRELIMINARIES

A. System Model

The system model used in our design consists of users,
trading platform, suppliers, grid operator and regulator. Users
consume/inject energy from/to the grid, for which they pay/get
compensated. They prefer to trade at the P2P market, hence
submit bids/offers (based on predictions) for each trading slot.
Depending on their bid type, they are either consumers Ci

(buyers) or prosumers Pj (sellers). Trading Platform manages
the market by handling users’ bids/offers to clear the market.
It sets the trading price (TP) based on current supply/demand
values, keeps track of each user’s monthly net balance, aggre-
gates market-wide energy usage statistics for each trading slot

https://github.com/Anndrey24/Privacy_Preserving_Algo

and assists each supplier to obrain net balance change for each
trading period as well as monthly bills of their users. Suppliers
sell energy to consumers at a retail buy price (RP), buy energy
from prosumers at a fixed feed-in tariff (FiT) and manage
their users’ bill (including the volumes traded at the P2P
market). Grid Operator manages the grid, hence it gets access
to energy usage statistics for each trading slot. Retail Market
(RM) Regulator coordinates the fair redistribution between
suppliers of capital acquired in their role as an intermediary
of the customer balances traded at the P2P market.

B. Threat Model and Assumptions

All entities in the system model are honest-but-curious.
They follow the protocol, but try to learn as much as possible
from the information they have available. Suppliers are trusted
to settle bills and payments as long as their truthfulness can be
verified by a supervisor agent. External entities are malicious.

All communication is assumed to be safe from interception,
reading, or modification by malicious entities. Thus, this paper
is only concerned with protecting sensitive information from
its intended recipients. Smart meters (SMs) are tamper-proof
devices. Each entity has access to everyone’s public keys and
their own private key. Users learn the acceptance status of their
bid/offer at the auction before the end of each trading period.

C. Privacy and Security Requirements

Our designed solution should satisfy the following three re-
quirements. Metering data confidentiality: Fine-grained (half-
hourly) meter readings must only be known by the respective
users. For all other uses (aggregation, bill calculation), the
data must only be available in an encrypted format. Partial
bill confidentiality: Users’ partial bill must be available only
in an encrypted format. Supplier accountability: An authorised
entity should be able to verify the veracity of each supplier’s
reported leftover capital after settling bills with its customers.

III. PROTOCOL DESIGN

A. Overview of PPBSP

PPBSP comprises four (user, trading platform, grid operator
and supplier) protocols, which run at two time periods.

At the end of each trading period (e.g., 30 min.) partial
bill calculation is done. Each user’s SM measures the current
meter reading for the specific trading slot, separating it into
committed energy amount and individual deviation, based on
its prior bid/offer at the energy auction. Each SM then con-
structs a final payload including homomorphically encrypted
versions of the sensitive metering data and additional non-
sensitive metadata, which is then sent to the trading platform.
Using the received payloads, the trading platform calculates
each user’s partial bills for the corresponding trading period in
accordance with one of the four implemented billing models,
with the grid operator acting as a crucial part in market-wide
data aggregation in two of the algorithms. After the partial
bill calculation is complete, suppliers are sent aggregated data
about their customers for that trading period, particularly the
respective supplier’s net balance change over that slot.

Algorithm 1 User Protocol
0: procedure PAYLOAD(bid accept, bid type, Ux

P2P , Ux
val)

1: net cons time = sign(Ux
val)

2: InDevx = (bid type × Ux
val) − Ux

P2P

3: {Ux
P2P }pub Sk

= Enc(Ux
P2P , pub Sk)

4: {Ux
P2P }pub GridOp = Enc(Ux

P2P , pub GridOp)

5: {InDevx}pub Sk
= Enc(InDevx, pub Sk)

6: {InDevx}pub GridOp = Enc(InDevx, pub GridOp)

7: return payload = (bid accept∥bid type∥net cons type∥sign(InDev)∥
{Ux

P2P }pub Sk
∥{InDevx}pub Sk

∥{Ux
P2P }pub GridOp∥{InDevx}pub GridOp)

After each billing period (a month), the final bill settlement
is done. The trading platform aggregates each user’s partial
bills over the billing period and sends the final number to
its corresponding supplier. Therefore, each supplier receives a
list of final bills of their associated customers. Each supplier
also sums up their own net balance changes incurred in each
trading period to arrive at a final net balance change value for
that billing period. After collecting payments or paying out
rewards according to its customers’ final bills, each supplier
subtracts its own earnings at the RM (final net balance) for
itself, with what remains being the residue of user transactions
at the P2P market. These leftover differences, positive/negative
(supplier’s customers bought/sold more energy at the P2PM),
are sent to the RM regulator, which coordinates their fair
redistribution such that the final aggregated residues from all
suppliers equal 0, signifying a correct bill settlement process.

B. User Protocol

At the end of a trading slot, each SM encrypts and sends
the fine-grained metering data, representing the energy con-
sumed/produced by that household over that slot, in confor-
mity with an accepted convention, in the form of a payload.
This process is presented in Alg. 1 and described next.

The SM obtains meter readings for the specific trading slot
Ux
val, which then is expressed in terms of: bid accept (1/0 (ac-

cepted/rejected)), bid type (1/−1 (buy/sell)), net cons type
– sign of Ux

val (1/−1 (net buyer/net seller)), volume committed
to the P2P market Ux

P2P , individual deviation InDevx, as a
measure of the difference between the real meter reading and
the volume committed: InDevx = bid type× Ux

val − Ux
P2P ,

where Ux
val = bid type × (Ux

P2P + InDevx) , bid type ∈
{±1}, and sign of the deviation sign(InDevx) ∈ {±1}.

It then encrypts the sensitive data with partial homomorphic
keys. It encrypts Ux

P2P and InDevx twice – each once with
the supplier’s homomorphic public key, and once with the
grid operator’s analogous public key, generating four cipher-
texts: {Ux

P2P }pub Sk
, {Ux

P2P }pub GridOp, {InDevx}pub Sk

and {InDevx}pub GridOp. Having these multiple encrypted
versions eliminates a single point of failure (SPOF), improving
the system’s availability and reliability. It also minimises any
risk of a supplier deviating from the protocol, because of the
auditing ability of the operator. Since bid accept, bid type,
net cons type, and sign(InDevx) contain less sensitive
data, they are not homomorphically encrypted. Finally, the SM
constructs and sends the payload to the trading platform.

C. Trading Platform Protocol
First, every trading period, the trading platform receives

users’ payloads. These payloads are individually stored, while
the individual deviation data encrypted with the grid opera-
tor’s homomorphic public key is aggregated into market-wide
statistics that represent the deviations of supply/demand from
their predicted values. The encrypted aggregate data is sent
to the grid operator for decryption. Depending on the billing
model deployed, the trading platform could continue with the
partial bill calculation or it might have to wait for the plaintext
version of the aggregated statistics. After the trading slot’s
partial bills are computed, the platform sends each supplier its
own respective net balance change for that period, representing
the sum of all buying/selling energy transactions with its users
at the RM (positive/negative for making a profit/loss).

Second, every billing period, the trading platform informs
the suppliers of their respective customers’ individual final
bills, homomorphically encrypted with the specific supplier’s
public key. These final bills include both the bills to/from the
P2P market (from energy transactions with other users) and
the bills to/from the RM (from transactions directly with the
supplier), in a single numerical value which each user pays
to/receives from their supplier. The details are in Section III-E.

Next we outline different billing models for P2P markets
with imperfect bid-offer fulfillment run after every trading
period by the trading platform. All input/output values are ho-
momorphically encrypted ciphertexs to preserve users’ privacy.
The four billing models have been adapted from [12], with all
being modified to allow for the use of Paillier homomorphic
encryption. The Status Quo algorithm has been adapted to fit
the type of payload used, and the Social Cost Split and Uni-
versal Cost Split billing models have also been improved by
adding a weighted redistribution of the total volume of energy
over-consumed (under-produced) or under-consumed (over-
produced) by reselling it at trading price (TP) to each user
whose InDevx negatively influenced the balance of the grid
(pushed the corresponding aggregated deviation away from 0),
according to each user’s proportional contribution to the total
deviation (TD), total supply deviation (TSD), and total demand
deviation (TDD), instead of the equal redistribution [12].

1) Billing Model for Retail Markets – the Status Quo:
The status quo in most of the liberalised RMs allows users to
trade only directly with their contracted supplier. Any excess
of energy fed into the grid is regulated and bought by suppliers
at FiT. Therefore, users have little to no incentive to adopt
renewable energy sources or change their load profiles. This
billing model has been detailed in the Appendix (see Alg. 4).

2) Billing Model with Individual Cost Split: It makes each
user independently responsible for trading away/compensating
for their individual deviations from the committed bids/offers,
by buying/selling their energy deficit/surplus at the RM, while
the committed volumes are traded at TP. Negative deviations
must be compensated for at the RM, so P2P trade commit-
ments are fulfilled, while positive deviations of both consumers
and prosumers are also traded directly at this market. This
billing model is shown in the Appendix (see Alg. 5). Figure 1a

illustrates an example with three consumers whose committed
volumes are 3 kWh, highlighting the use of the RM to either
sell negative deviation (C1) or purchase positive deviations (C2

and C3). With all individual deviations being independently
traded at the RM, the total volume traded at RM is equal to
the sum of the absolute values of every user’s deviation:

V RM
Ind =

P2P c
n∑

i=1

|InDevi|+
P2Pp

n∑
j=1

|InDevj | (1)

3) Billing Model with Weighted Social Cost Split: It uses
the aggregated individual deviations of consumers to socially
split the cost among them proportionally to each consumer’s
effect on the TDD. Similarly, prosumers’ deviations are aggre-
gated into a single value which is split among them according
to their contribution to the TSD. As aggregated values of
meter readings are used in calculating the partial bills, the
platform must wait for the decrypted statistics to arrive from
the operator. Figure 1b illustrates an over-consuming market
with three consumers, highlighting the weighted redistribution
of energy bought at TP from the one under-consumer (C1) to
the two over-consumers (C2 and C3), before trading at RM.

Details of the privacy-preserving Weighted Social Cost Split
billing model are shown in the Appendix (Alg. 6). The TDD
is calculated as the sum of all consumer individual deviations.
The TSD represents the aggregate of all prosumer individual
deviations. If the TDD is equal to zero, then all consumers
buy their entire consumed energy at TP, regardless of their
individual deviations. This benefits both under-consumers, as
they do not need to sell energy at FiT, and the over-consumers,
as they are not forced to buy their energy deficit at RP from
their supplier. The case the TSD is zero is analogous.

A positive TDD indicates that the consumers, as a whole,
over-consumed in relation to the total volume bought at the
P2P market. The under-consumers only partially compensate
for the over-consumers. Effectively, they buy their committed
volumes at TP and then sell the unused energy to the over-
consumers also at TP. Such, the total volume under-consumed
T c
under disappears from the under-consumers’ bills and is pro-

portionately redistributed to the over-consumers’ bills, based
on each over-consumer’s contribution to the total volume over-
consumed T c

over. A negative TDD indicates the consumers, as
a whole, under-consumed, leaving excess energy on the grid,
and the over-consumers only partly compensate for the under-
consumers. In essence, the under-consumers again buy their
committed volumes at TP and then sell proportions of their
individual deviations to the over-consumers also at TP. The
proportions resold at TP are based on each under-consumer’s
contribution to the total volume under-consumed T c

under and
add up to the value of the total volume over-consumed T c

over.
Similarly, the cases for prosumers are analogous.

Suppliers only trade energy with consumers/prosumers
whose individual deviation sign is the same as the sign of
the TDD/TSD respectively. Users whose bids/offers were not
accepted at the auction must trade their entire consump-
tion/production at the RM at RP and FiT, according to Alg. 4.

0 1 2 3-1-2

3 4 5 6210

InDev

consumption

-3

Consumer 1

Consumer 2

Consumer 3

bought at RP

bought at TP

committed volume

sold at FiT

(a) Individual cost split billing.

Tcunder

0 1 2 3-1-2

3 4 5 6210

InDev

consumption

-3

Consumer 1

Consumer 2

Consumer 3

bought at RP

bought at TP

committed volume

(b) Weighted social cost split billing.

0 1 2 3-1-2

3 4 5 6210 consumption

-3

Consumer 1

Consumer 2

Consumer 3

bought at RP
bought at TP

committed volume

3 4 5 6210
production

Prosumer 1

Prosumer 2

Prosumer 3

InDev

T_up

sold at TP

(c) Weighted universal cost split billing.

Fig. 1: Example of billing models.

By dealing with consumer bills separately from prosumer
rewards, the total volume of energy traded with the suppliers is
equal to the sum of the absolute values of TDD and TSD, with
the former representing the sum of all consumer deviations,
and the latter constituting the sum of all prosumer deviations:

V RM
Soc = |

P2P c
n∑

i=1

InDevi|+ |
P2Pp

n∑
j=1

InDevj | (2)

4) Billing Model with Weighted Universal Cost Split:
This model is concerned with the TD of the P2P market, an
aggregate value of all individual deviations of both consumers
and prosumers, which is split among users whose deviations
are in the same direction as the TD, in proportion to their
contribution to the aggregate value. Similarly to the previous
model, the trading platform needs to wait for the decrypted ag-
gregate P2P market statistics. Figure 1c showcases an example
with three consumers and three prosumers whose committed
volumes are 3 kWh, highlighting the weighted redistribution
of energy at TP from the one under-consumer (C1) and one
over-supplier (P2) to the two over-consumers (C2 and C3).

We call users who push TD up by under-consuming or
over-supplying uptrenders, while those who pull the TD down
by over-consuming or under-supplying – downtrenders. The
model is shown in the Appendix (Alg. 7). The TD is calculated
as the sum of all prosumer deviations minus the sum of all
consumer deviations, i.e, difference between the TSD and
TDD. If the TD is zero, then all users participating in the P2P
market buy/sell their actual energy readings at TP, disregarding
the specific committed volumes or individual deviations.

A positive TD means the total volume under-consumed or
over-supplied T up = T c

under +T p
over is greater than the total

volume over-consumed or under-supplied T down = T c
over +

T p
under, total supply being more than the total demand. All

downtrenders trade their exact energy meter readings entirely
at TP, while the uptrenders partly compensate for their individ-
ual deviations, i.e., under-consumers/over-suppliers trade their
committed volumes at TP, sell a proportion of their individual
deviation to downtrenders also at TP, and the rest at FiT to
suppliers, instead of selling the entire individual deviation at
FiT. The proportions resold at TP are based on each respective
uptrender’s contribution to T up, and sum up to T down.

Algorithm 2 Grid Operator Protocol
0: procedure DECRYPTED AGGREGATES(payload in)
1: T c

under = Dec ({T c
under}pub GridOp, priv GridOp)

2: T c
over = Dec ({T c

over}pub GridOp, priv GridOp)

3: Tp
under = Dec

(
{Tp

under}pub GridOp, priv GridOp
)

4: Tp
over = Dec ({Tp

over}pub GridOp, priv GridOp)

5: return payload out =
(
T c
under∥T

c
over∥T

p
under∥T

p
over

)

A negative TD suggests demand exceeds supply, with
the total volume over-consumed or under-supplied T down
being greater than the total volume under-consumed or over-
supplied T up. All uptrenders buy/sell their meter readings at
TP, regardless of their committed volumes/deviations, while
the downtrenders partially reduce the cost of their individ-
ual deviations, i.e., over-consumers/under-suppliers trade their
committed volumes at TP as usual, then buy a share of their
respective deviation from the uptrenders also at TP, before
purchasing the rest of the difference from the RM.

Suppliers only trade energy with users whose individual
deviations point in the same direction as the TD. Unaccepted
bids/offers are settled according to Alg. 4. The volume traded
with the suppliers is equal to the absolute value of the sum of
all individual deviations of consumers/prosumers:

V RM
Univ = |

P2P c
n∑

i=1

InDevi +

P2Pp
n∑

j=1

InDevj | = |
P2Pn∑
x=1

InDevx|

(3)

D. Grid Operator Protocol

For each trading slot, the grid operator receives a list of
encrypted aggregate values: total volume under-consumed,
over-consumed, under-supplied, over-supplied by P2P users.

payload in = ({T c
under}pub GridOp∥{T c

over}pub GridOp∥
{T p

under}pub GridOp∥{T p
over}pub GridOp

(4)
It then decrypt each of the homomorphically encrypted values
using the corresponding private key of the grid operator, and
then sends the plaintext values back to the trading platform.

payload out = (T c
under∥T c

over∥T
p
under∥T

p
over) (5)

Algorithm 3 Supplier Protocol
0: procedure SUPPLIER PROFIT

1: for each i in no slots do
2: Sbal

k += Sbal i
k

3: end for
4: for each i, j in P2P c

n,k , P2Pp
n,k do

5: P2Pc bills += Dec
(
{P2P i

c bill}pub Sk
, priv Sk

)
6: P2Pp rewards += Dec

(
{P2P j

p reward}pub Sk
, priv Sk

)
7: end for
8: return SP2P

k = (P2Pc bills − P2Pp rewards) − Sbal
k

E. Supplier Protocol

Suppliers settle the final monthly bills with their contracted
customers and ensure all payments to/from the P2P market
sent/received by these customers, which are included in their
final bill, are distributed accordingly across the other suppliers.
The supplier operates in two phases. Every trading period, it
receives its aggregate profit from all customer transactions in
that slot {Sbal i

k }pub Sk
, which is decrypted with their key:

decrypt
(
{Sbal i

k }pub Sk
, priv Sk

)
= Sbal i

k (6)

At the end of each billing period, it resolves the final bills (see
Alg. 3). It calculates monthly profit using the partial profits.

Sbal
k =

no slots∑
i=1

Sbal i
k (7)

It receives from the trading platform the final electricity bill
of each of its customers, which includes both the value these
users need to pay to the P2P market and to the RM. It decrypts
each of the bills using its homomorphic private key:

decrypt ({P2P x bill/rwd}pub Sk
, priv Sk) = P2P x bill/rwd

(8)
It carries out the billing with customers by receiving compen-
sation for the bills from their overall net buyers and paying
out the rewards of their overall net sellers. It then calculates
the left-over capital traded at the P2P market by subtracting
the total supplier profit from the aggregate customer bills:

SP2P
k =

P2P c
n,k∑

i=1

P2P i
c bill −

P2Pp
n,k∑

j=1

P2P j
p reward

− Sbal
k

(9)
Finally, it submits the value of the P2P trade residue SP2P

k to
the RM regulator in order to facilitate the fair redistribution
of the remaining capital among the other suppliers.

After all these left-over balances are submitted to the market
regulator, it is checked that their sum is zero, indicating that
the entire P2P trade has been accounted for. In the case of a
non-zero value, the grid operator is called to verify the values.

IV. PRIVACY AND SECURITY ANALYSIS

Metering data confidentiality: Each user’s consumption data
(CD) is encrypted at its source (SM) using Paillier scheme,
once using the grid operator’s public key and once separately
using their contracted supplier’s public key. The encrypted

consumption data (ECD) is then sent to the trading platform
where it is temporarily stored and used in bill calculation in
encrypted format. Each user’s individual deviation (part of
ECD) is aggregated with that of all the other users participating
in the P2P market, before being sent to the grid operator
for decryption. Hence, the most fine-grained CDs the trading
platform and the grid operator have access to are the aggregate
CDs (ACD) of all users of the P2P market. Even authorised
entities do not have access to individual metering data.

Partial bill confidentiality: The ECD of each user is used in
the calculation of the partial bill by the trading platform. There
are two separate ciphertexts of the user’s bill for each trading
period, one encrypted with the homomorphic public key of the
grid operator and one with the corresponding supplier, with the
trading platform being incapable of decrypting either of them.

After each trading slot, the platform calculates an aggregate
encrypted profit for each supplier using the encrypted partial
bills of their respective users, which is then communicated
to the specific supplier. The suppliers are not informed of
the individual fine-grained electricity bills of their customers.
Instead, they only receives the aggregate encrypted profit
incurred from trading with their customer base, which they
can decrypt using their own private keys. Assuming a large
enough number of users contracted to the same supplier, it is
impossible for that supplier to extract any detailed information
about a specific user’s individual deviation, let alone their CD.

At the end of each billing period, partial bills are added up
into a single encrypted value, which is sent to their supplier
for bill settlement. Assuming half-hourly trading slots over the
period of an entire month, this final bill would represent the
aggregate of at least 1344 partial bills. Thus, the supplier is
unable to deduce any detailed sensitive data from the final bill.

Supplier accountability: The entire partial bill calculation
process performed by the trading platform every trading period
is carried out once using the data encrypted by the suppliers’
homomorphic public keys, and repeated again using the data
encrypted with the grid operator’s public key. Thus, instead of
each individual supplier being the only one capable of decrypt-
ing their users’ final bills and being trusted to communicate
accurate values to the market regulator, the grid operator also
has the capacity to verify any of their calculations.

V. PERFORMANCE EVALUATION

A. Computational Complexity

Computationally expensive operations in PPBSP are key
generation, encryption/decryption, and encrypted bill calcula-
tion, denoted as KeyGen, HomoEnc, HomoDec, and BillCalc.
Table I summarises the computational complexity of PPBSP.

At every trading period, each SM performs four HomoEnc,
encrypting its committed volume and its individual deviation
twice: 4×HomoEnc; the platform computes two separate par-
tial bills for each user, which can be parallelised: (2×Nu)×
BillCalc; The grid operator carries out four HomoDec, de-
crypting the aggregate market statistics received from the
trading platform: 4 × HomoDec; Each supplier performs one
HomoDec, decrypting their aggregate profit: 1× HomoDec.

TABLE I: Computational complexity of PPBSP

Entity Per trading period Per billing period

SM 4 × HomoEnc -
TrPlat (2 × Nu) × BillCalc -
GridOp 4 × HomoDec (2 × Ns) × HomoDec ∗

Supplier 1 × HomoDec Nu,s × HomoDec
∗ only on request for inspection.

(a) Linear Time (b) Constant Time

Fig. 2: Computational cost of each PPBSP entity.

At every billing period, only if the suppliers have communi-
cated erroneous results, the grid operator aggregates the final
bills per supplier and then decrypts these aggregates and each
of the monthly supplier profits: (2×Ns) × HomoDec; each
supplier decrypts their customers’ bills: Nu,s × HomoDec.

We ran simulations on an Intel Core i7-8565U CPU
(1.80GHz) with 16GB of RAM to demonstrate the scalability
of PPBSP. For the experiments, homomorphic encryption was
implemented using the python-paillier library [13] with 2048-
bit keys. The mean run time (over 1000 simulations) of each
operation is the following: KeyGen = 339.53 ms; HomoEnc
= 28.48 ms; HomoDec = 8.14 ms and BillCalc = 3.22 ms.
The computational complexity of PPBSP for a system with
30 suppliers and users from 300k to 900k is plotted in Fig. 2.
The results illustrate the practicality and scalability of PPBSP.

B. Communication Overhead

The communication overhead can be separated into four
parts: data sent from SMs to the platform (SM-to-TrPlat), from
the trading platform to the grid operator (TrPlat-to-GridOp),
from the grid operator back to the trading platform (GridOp-
to-TrPlat), and from the trading platform to suppliers (TrPlat-
to-Sup). Table II illustrates the communication cost of PPBSP.

At every trading period, each SM sends the platform four
ciphertexts and four Boolean flags: (4×Nu) × (|c|+ |bf |);
the trading platform sends four ciphertexts (encrypted market
aggregates) to the grid operator: 4 × |c|; The grid operator
sends back four floating point numbers (decrypted market
aggregates): 4×|fp|; The trading platform sends each supplier
a ciphertext representing their balance change: Ns × |c|.

At every billing period, the trading platform sends the
encrypted aggregate bills per supplier and also each supplier’s
encrypted final profits only if the suppliers are misbehaving:
(2×Ns)×|c|; The suppliers receive from the trading platform
their customers’ encrypted monthly bills: Nu × |c|.

We simulated the overhead in Fig. 3 with |c| = 4096 bits,
|bf | = 8 bits, |fp| = 64 bits, Ns = 30, and users, 300k–900k.

TABLE II: Communication cost of PPBSP

Protocol part Per trading period Per billing period

SM-to-TrPlat (4 × Nu) × (|c| + |bf |) -
TrPlat-to-GridOp 4 × |c| (2 × Ns) × |c| ∗

GridOp-to-TrPlat 4 × |fp| -
TrPlat-to-Sup Ns × |c| Nu × |c|

∗ only on request for inspection.

(a) Linear Functions (b) Constant Functions

Fig. 3: Communication overhead of PPBSP.

VI. CONCLUSIONS

We designed a privacy-preserving billing and settlements
protocol (PPBSP) for computing and settling bills for users
participating in P2P local energy markets. PPBSP uses partial
homomorphic encryption in order to settle user bills in a
private manner, while taking into account each user’s potential
differences between its real meter reading and the volume
committed at the P2P market auction. The proposed protocol
also supports the proportional redistribution of the costs in-
curred from these deviations among the market’s participants.
Our analysis and results indicate PPBSP’s computational effi-
ciency and the scalability to realistic-sized P2P markets.

REFERENCES

[1] T. Capper, A. Gorbatcheva, M. A. Mustafa, M. Bahloul, J. M. Schwidtal,
R. Chitchyan, M. Andoni, V. Robu, M. Montakhabi, I. J. Scott et al.,
“Peer-to-peer, community self-consumption, and transactive energy: A
systematic literature review of local energy market models,” Renew. Sust.
Energ. Rev., vol. 162, p. 112403, 2022.

[2] C. Zhang, J. Wu, Y. Zhou, M. Cheng, and C. Long, “Peer-to-peer energy
trading in a microgrid,” Applied Energy, vol. 220, pp. 1–12, 2018.

[3] M. Hamlich et al., “Short-term load forecasting using machine learning
and periodicity decomposition,” AIMS Energy, vol. 7, no. 3, 2019.

[4] Y. Fu, Z. Li, H. Zhang, and P. Xu, “Using support vector machine to
predict next day electricity load of public buildings with sub-metering
devices,” Procedia Engineering, vol. 121, pp. 1016–1022, 2015.

[5] V. Dudjak, D. Neves, T. Alskaif, S. Khadem, A. Pena-Bello, P. Saggese,
B. Bowler, M. Andoni, M. Bertolini, Y. Zhou et al., “Impact of local
energy markets integration in power systems layer: A comprehensive
review,” Applied Energy, vol. 301, p. 117434, 2021.

[6] M. A. Mustafa, S. Cleemput, and A. Abidin, “A local electricity trading
market: Security analysis,” in IEEE PES ISGT-Europe, 2016, pp. 1–6.

[7] E. L. Quinn, “Privacy and the new energy infrastructure,” 2009.
[8] A. Alabdulatif, I. Khalil, H. Kumarage, and M. Atiquzzaman, “Privacy-

preserving cloud-based billing with lightweight homomorphic encryp-
tion for sensor-enabled smart grid infrastructure,” IET Wirel. Sens. Syst.,
vol. 7, no. 6, pp. 182–190, 2017.

[9] A. Abidin, A. Aly, S. Cleemput, and M. A. Mustafa, “An mpc-based
privacy-preserving protocol for a local electricity trading market,” in
Proceedings of CANS. Springer, 2016, pp. 615–625.

[10] ——, “Secure and privacy-friendly local electricity trading and billing
in smart grid,” IEEE Tran. on Smart Grid, 2018.

[11] R. Thandi and M. A. Mustafa, “Privacy-enhancing settlements protocol
in peer-to-peer energy trading markets,” in ISGT-NA. IEEE, 2022.

[12] A. Madhusudan, F. Zobiri, and M. A. Mustafa, “Billing models for peer-
to-peer electricity trading markets with imperfect bid-offer fulfillment,”
in IEEE ISC2. IEEE, 2022, pp. 1–7.

[13] C. Data61, “Python paillier library,” https://github.com/data61/
python-paillier, 2013.

https://github.com/data61/python-paillier
https://github.com/data61/python-paillier

APPENDIX

A. Privacy-preserving Billing Model for Retail Markets

Algorithm 4 Privacy-preserving Billing Model for Retail Markets
0: procedure NET BUYER BILLS, NET SELLER REWARDS, SUPPLIER BALANCE
1: for each timeslot do
2: for each x, k in Un, Sn do
3: if user is P2P then
4: {Ux

val}pub Sk
= {Ux

P2P }pub Sk
+ {InDevx}pub Sk

5: end if
6: if net cons type ̸= bid type then
7: {Ux

val}pub Sk
= −{Ux

val}pub Sk
8: end if
9: if user is net buyer then

10: {Ux bill}pub Sk
= {Ux

val}pub Sk
× RP

11: {Sinc
k }pub Sk

+= {Ux bill}pub Sk
12: end if
13: if user is net seller then
14: {Ux reward}pub Sk

= {Ux
val}pub Sk

× FiT
15: {Sexp

k }pub Sk
+= {Ux reward}pub Sk

16: end if
17: {Sbal

k }pub Sk
+= {Sinc

k }pub Sk
− {Sexp

k }pub Sk
18: end for
19: end for

B. Privacy-preserving Billing Model with Individual Cost Split

Algorithm 5 Privacy-preserving Billing Model with Individual Cost Split
0: procedure CUSTOMER BILLS, PROSUMER REWARDS, SUPPLIER BALANCE
1: for each timeslot do
2: if bid accepted then
3: for each i, j and k in P2P c

n, P2Pp
n and Sn do

4: if sign(InDevx) = 0 then
5: {P2P i

c bill}pub Sk
= {CP2P

dem }pub Sk
× TP

6: {P2P j
p reward}pub Sk

= {PP2P
sup }pub Sk

× TP
7: {Sinc

k }pub Sk
+= 0; {Sexp

k }pub Sk
+= 0

8: end if
9: if sign(InDevx) < 0 then

10: {P2P i
c bill}pub Sk

= {CP2P
dem }pub Sk

× TP + {InDevi}pub Sk
× FiT

11: {P2P j
p reward}pub Sk

= {PP2P
sup }pub Sk

× TP + {InDevj}pub Sk
× RP

12: {Sinc
k }pub Sk

-= {InDevj}pub Sk
× RP

13: {Sexp
k }pub Sk

-= {InDevi}pub Sk
× FiT

14: end if
15: if sign(InDevx) > 0 then
16: {P2P i

c bill}pub Sk
= {CP2P

dem }pub Sk
× TP + {InDevi}pub Sk

× RP
17: {P2P j

p reward}pub Sk
= {PP2P

sup }pub Sk
× TP + {InDevj}pub Sk

× FiT
18: {Sinc

k }pub Sk
+= {InDevi}pub Sk

× RP
19: {Sexp

k }pub Sk
+= {InDevj}pub Sk

× FiT
20: end if
21: {Sbal

k }pub Sk
= {Sinc

k }pub Sk
− {Sexp

k }pub Sk
22: end for
23: end if
24: if bid not accepted then
25: for each i, j and k in Cn, Pn and Sn do
26: goto Algorithm 4
27: end for
28: end if
29: end for

C. Privacy-preserving Billing Model with Weighted Social Cost Split

Algorithm 6 Privacy-preserving Billing Model with Weighted Social Cost Split
1: for each timeslot do
2: if bid accepted then
2: procedure CUSTOMER BILLS, SUPPLIER INCOME/EXPENDITURE
3: for each i and k in P2P c

n and Sn do
4: if TDD = 0 then
5: {P2P i

c bill}pub Sk
= {CP2P

dem }pub Sk
× TP

6: {Sinc
k }pub Sk

+= 0
7: end if
8: if TDD < 0 then
9: if sign(InDevi) ≥ 0 then

10: {P2P i
c bill }pub Sk

= ({CP2P
dem }pub Sk

+ {InDevi}pub Sk
) × TP

11: {Sinc
k }pub Sk

+= 0
12: end if
13: if sign(InDevi) < 0 then
14: {P2P i

c bill}pub Sk
= ({CP2P

dem }pub Sk
+ {InDevi}pub Sk

× Tc
over

Tc
under

)× TP +{InDevi}pub Sk
× (1 − Tc

over
Tc
under

)× FiT

15: {Sexp
k }pub Sk

-= {InDevi}pub Sk
× (1 − Tc

over
Tc
under

)× FiT
16: end if
17: end if
18: if TDD > 0 then
19: if sign(InDevi) ≤ 0 then
20: {P2P i

c bill}pub Sk
= ({CP2P

dem }pub Sk
+ {InDevi}pub Sk

) × TP
21: {Sinc

k }pub Sk
+= 0

22: end if
23: if sign(InDevi) > 0 then
24: {P2P i

c bill}pub Sk
= ({CP2P

dem }pub Sk
+ {InDevi}pub Sk

× Tc
under
Tc
over

)× TP +{InDevi}pub Sk
× (1 − Tc

under
Tc
over

)× RP

25: {Sinc
k }pub Sk

+= {InDevi}pub Sk
× (1 − Tc

under
Tc
over

)× RP
26: end if
27: end if
28: {Sbal

k }pub Sk
= {Sinc

k }pub Sk
− {Sexp

k }pub Sk
29: end for
29: end procedure
29: procedure PROSUMER REWARDS, SUPPLIER INCOME/EXPENDITURE
30: for each j and k in P2Pp

n and Sn do
31: if TSD = 0 then
32: {P2P j

p reward}pub Sk
= {PP2P

sup }pub Sk
× TP

33: {Sexp
k }pub Sk

+= 0
34: end if
35: if TSD < 0 then
36: if sign(InDevj) ≥ 0 then
37: {P2P j

p reward}pub Sk
= ({PP2P

sup }pub Sk
+ {InDevj}pub Sk

) × TP
38: {Sexp

k }pub Sk
+= 0

39: end if
40: if sign(InDevj) < 0 then
41: {P2P j

p reward}pub Sk
= ({PP2P

sup }pub Sk
+ {InDevj}pub Sk

× T
p
over

T
p
under

)× TP +{InDevj}pub Sk
× (1 − T

p
over

T
p
under

)×RP

42: {Sinc
k }pub Sk

-= {InDevj}pub Sk
× (1 − T

p
over

T
p
under

)× RP

43: end if
44: end if
45: if TSD > 0 then
46: if sign(InDevj) ≤ 0 then
47: {P2P j

p reward}pub Sk
= ({PP2P

sup }pub Sk
+ {InDevj}pub Sk

) × TP
48: {Sexp

k }pub Sk
+= 0

49: end if
50: if sign(InDevj) > 0 then

51: {P2P j
p reward}pub Sk

= ({PP2P
sup }pub Sk

+ {InDevj}pub Sk
×

T
p
under
T

p
over

)× TP +{InDevj}pub Sk
× (1 −

T
p
under
T

p
over

)×FiT

52: {Sexp
k }pub Sk

+= {InDevj}pub Sk
× (1 −

T
p
under
T

p
over

)× FiT
53: end if
54: end if
55: {Sbal

k }pub Sk
= {Sinc

k }pub Sk
− {Sexp

k }pub Sk
56: end for
57: end if
57:

58: if bid not accepted then
59: for each i, j and k in Cn, Pn and Sn do
60: goto Algorithm 4
61: end for
62: end if
63: end for=0

D. Privacy-preserving Billing Model with Weighted Universal Cost Split

Algorithm 7 Privacy-preserving Billing Model with Weighted Universal Cost Split
0: procedure CUSTOMER BILLS, PROSUMER REWARDS, SUPPLIER BALANCE
1: for each timeslot do
2: if bid Accepted then
3: for each i, j and k in P2P c

n, P2Pp
n and Sn do

4: if TD = 0 then
5: {P2P i

c bill}pub Sk
= {CP2P

dem }pub Sk
× TP

6: {P2P j
p reward}pub Sk

= {PP2P
sup }pub Sk

× TP
7: {Sinc

k }pub Sk
+= 0; {Sexp

k }pub Sk
+= 0

8: end if
9: if TD < 0 then

10: {Sexp
k }pub Sk

+= 0
11: if sign(InDevx) ≤ 0 then
12: {P2P i

c bill}pub Sk
= ({CP2P

dem }pub Sk
+ {InDevi}pub Sk

) × TP
13: {P2P j

p reward}pub Sk
= ({PP2P

sup }pub Sk
+ {InDevj}pub Sk

× Tup
Tdown

)× TP +{InDevj}pub Sk
× (1 − Tup

Tdown
)×RP

14: {Sinc
k }pub Sk

-= {InDevj}pub Sk
× (1 − Tup

Tdown
)× RP

15: end if
16: if sign(InDevx) > 0 then
17: {P2P i

c bill}pub Sk
= ({CP2P

dem }pub Sk
+ {InDevi}pub Sk

× Tup
Tdown

)× TP +{InDevi}pub Sk
× (1 − Tup

Tdown
)× RP

18: {P2P j
p reward}pub Sk

= ({PP2P
sup }pub Sk

+ {InDevj}pub Sk
) × TP

19: {Sinc
k }pub Sk

+= {InDevi}pub Sk
× (1 − Tup

Tdown
)× RP

20: end if
21: end if
22: if TD > 0 then
23: {Sinc

k }pub Sk
+= 0

24: if sign(InDevx) ≤ 0 then
25: {P2P i

c bill}pub Sk
= ({CP2P

dem }pub Sk
+ {InDevi}pub Sk

× Tdown
Tup

)× TP +{InDevi}pub Sk
× (1 − Tdown

Tup
)× FiT

26: {P2P j
p reward}pub Sk

= ({PP2P
sup }pub Sk

+ {InDevj}pub Sk
) × TP

27: {Sexp
k }pub Sk

-= {InDevi}pub Sk
× (1 − Tdown

Tup
)× FiT

28: end if
29: if sign(InDevx) > 0 then
30: {P2P i

c bill}pub Sk
= ({CP2P

dem }pub Sk
+ {InDevi}pub Sk

) × TP
31: {P2P j

p reward}pub Sk
= ({PP2P

sup }pub Sk
+ {InDevj}pub Sk

× Tdown
Tup

)× TP +{InDevj}pub Sk
× (1 − Tdown

Tup
)×FiT

32: {Sexp
k }pub Sk

+= {InDevj}pub Sk
× (1 − Tdown

Tup
)× FiT

33: end if
34: end if
35: {Sbal

k }pub Sk
+= {Sinc

k }pub Sk
− {Sexp

k }pub Sk
36: end for
37: end if
38: if bid not accepted then
39: for each i, j and k in Cn, Pn and Sn do
40: goto Algorithm 4
41: end for
42: end if
43: end for

	Introduction
	Preliminaries
	System Model
	Threat Model and Assumptions
	Privacy and Security Requirements

	Protocol Design
	Overview of PPBSP
	User Protocol
	Trading Platform Protocol
	Billing Model for Retail Markets – the Status Quo
	Billing Model with Individual Cost Split
	Billing Model with Weighted Social Cost Split
	Billing Model with Weighted Universal Cost Split

	Grid Operator Protocol
	Supplier Protocol

	Privacy and Security Analysis
	Performance Evaluation
	Computational Complexity
	Communication Overhead

	Conclusions
	References
	Privacy-preserving Billing Model for Retail Markets
	Privacy-preserving Billing Model with Individual Cost Split
	Privacy-preserving Billing Model with Weighted Social Cost Split
	Privacy-preserving Billing Model with Weighted Universal Cost Split

