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THE SEA ALGORITHM IN CHARACTERISTIC 2

FREDERIK VERCAUTEREN

Abstract. The Schoof-Elkies-Atkin algorithm counts the number of rational

points on elliptic curves over finite fields. This paper presents a number of

optimizations specific for the characteristic two case. We give a detailed de-

scription of the computation of modular polynomials over F2n and the search

for an eigenvalue in the Elkies algorithm. With our implementation, we were

able to count the number of rational points on a curve defined over F21999 ,

which is the current world record for the characteristic two case.

1. Introduction

Public-key cryptosystems based on elliptic curves (ECC) over finite fields, first
proposed by Koblitz [15] and Miller [24], offer a similar level of security as other
systems such as RSA [28], but with the benefit of much smaller key sizes. This
is due to the fact that there is no known sub-exponential algorithm to solve the
discrete logarithm problem on a general elliptic curve. The best known general
attacks on ECC’s have running time proportional to the square root of the largest
prime factor dividing the group order. Thus the security of an ECC mainly depends
on the number of rational points on the elliptic curve and therefore it is necessary to
explicitly determine this number of rational points whilst generating secure elliptic
curves. Furthermore, most cryptographic schemes based on elliptic curves rely on
the order of the curve.

Several methods for constructing elliptic curves with known cardinality, such
as the complex multiplication method [5, 17, 25] or supersingular curves [2, 23],
introduce an extra structure on the curve which could be used to break the cryp-
tosystem [11, 22, 29, 36]. Therefore it is believed that the Schoof-Elkies-Atkin
(SEA) algorithm is the best way to generate secure elliptic curves with nearly prime
cardinality, because it can determine the group order of a randomly chosen curve.

Although the original Schoof algorithm [31] has polynomial running time, it
turns out to be inefficient in practice. Thanks to the ideas of Elkies [9, 10] and
Atkin [1, 32] and the improvements of Morain [26], Couveignes [6], Dewaghe [8],
Lercier [19], Müller [27], . . . , it is now possible to generate secure elliptic curves
in a reasonable time. In this article we present an overview of the SEA algorithm
and give optimizations specific for the characteristic two case. We describe an
implementation of this algorithm and give accurate statistics in the range of interest
to cryptography, i.e., for elliptic curves defined over F2n , with 163 ≤ n ≤ 431. We
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2 F. VERCAUTEREN

also report on the use of our implementation to count the number of rational points
on a curve defined over F21999 in approximately 65 days on a Pentium II 400 MHz.

The remainder of the article is structured as follows: in Section 2 we recall the
basic facts about elliptic curves over F2n and give a high level description of the
SEA algorithm. In Section 3 we explain in detail how to compute the modular
polynomials over F2n and present an optimized version of Müller’s baby-step giant-
step algorithm for finding an eigenvalue in the Elkies case. Section 4 describes
details of our implementation and gives running times for elliptic curves suitable
for public-key cryptography.

2. Overview of the SEA algorithm

2.1. Elliptic curves over F2n . Let Fq be the finite field of characteristic two with
q = 2n elements. Let Ea be an elliptic curve defined over Fq by the affine equation

(2.1) Ea(x, y) : y2 + xy − x3 − a = 0,

where a ∈ F∗q . Then Ea is non-supersingular with j-invariant ja = 1/a and dis-
criminant ∆a = a.

Let Fq be the algebraic closure of Fq and for every field Fq ⊂ K ⊂ Fq define the
set of K-rational points as

(2.2) Ea(K) = {(x, y) ∈ K×K | Ea(x, y) = 0} ∪ {O},
where O denotes the point at infinity. Every set Ea(K) forms an Abelian group
with addition law given by the tangent-and-chord method and with O acting as
neutral element.

The Frobenius map is defined as

(2.3) ϕ : Ea(Fq) −→ Ea(Fq) : (x, y) 7→ (xq, yq).

It is easy to show that this is a group endomorphism of Ea over Fq, hence the
name Frobenius endomorphism. This map satisfies the quadratic relation in the
endomorphism ring of Ea

(2.4) ϕ2 − [t]ϕ+ [q] = [0],

where [m] is the multiplication-by-m map. The integer t is called the trace of
Frobenius and is linked to the number of Fq-rational points #Ea(Fq) by

(2.5) #Ea(Fq) = q + 1− t.

Furthermore, the theorem of Hasse [35] guarantees that |t| ≤ 2
√
q.

2.2. The SEA algorithm. Schoof considered the restriction ϕl of ϕ to the l-torsion
subgroup Ea[l] = {P ∈ Ea(Fq) | [l]P = O} of Ea, where l is an odd prime number.
It is well known that Ea[l] ∼= Z/lZ×Z/lZ, so Ea[l] has exactly l+1 cyclic subgroups
Ci, 1 ≤ i ≤ l + 1 of order l. Equation (2.4) reduces over Ea[l] to

(2.6) ϕ2l − [tl]ϕl + [ql] = 0,

where tl ≡ t mod l and ql ≡ q mod l. Schoof determines t mod l by searching an
integer 0 ≤ τl < l which satisfies

(2.7) ϕ2l (P ) + [ql](P ) = [τl]ϕl(P ),

for a point P ∈ Ea[l]
∗. By Hasse’s theorem we know that |t| ≤ 2

√
q, so it is

sufficient to compute t mod li for small primes li until their product exceeds 4
√
q.

Finally, by means of the Chinese Remainder Theorem one can deduce t.



THE SEA ALGORITHM IN CHARACTERISTIC 2 3

Denote by fl the l-th division polynomial [16], which has degree (l2 − 1)/2 and
vanishes on the non-zero x-coordinates of the l-torsion points P ∈ Ea[l]. Then all
computations for verifying Equation (2.7) take place in the polynomial ring

(2.8) Fq[x, y]/(fl(x), Ea(x, y)).

The complexity of the original Schoof algorithm is O(log8 q), but despite this poly-
nomial running time, it turns out to be inefficient for cryptographic purposes. This
inefficiency is caused by the quadratic growth of the degree of fl.

The ideas of Atkin [1] and Elkies [9, 10] focus on the splitting of the characteristic
equation of ϕl over Fl. If the discriminant ∆l = t2l − 4ql is a square modulo l, then
l is called an Elkies prime, otherwise l is called an Atkin prime. If l is an Elkies
prime, then ϕl has an eigenvalue λ in Fl and the corresponding eigenspace Ea[l]λ
(one of the subgroups Ci) is stable under the Frobenius endomorphism. Define

(2.9) gl(x) =
∏

±P∈Ea[l]∗λ

(x− x(P ))

where only one of each pair ±P is included, because both P and −P have the
same x-coordinate. Then it follows that gl ∈ Fq[x] and has degree (l − 1)/2. If

C is a finite subgroup of Ea(Fq) which is Galois stable over Fq, then there always
exists an elliptic curve E′a defined over Fq and an isogenie I : Ea −→ E′a with
kernel equal to C. Applying this to Ea[l]λ, we can compute gl once we have found
the corresponding elliptic curve E ′a,λ and an isogenie Iλ, such that ker (Iλ) =

Ea[l]λ. The problem of finding E′a,λ is solved by the following theorem taken from

Schoof [32].

Theorem 2.1. Let Φl(x, y) = 0 be the l-th modular polynomial over Fq and let E
be a non-supersingular elliptic curve over Fq. Then there exists an isogenous curve

E′ and an isogenie from E to E′ whose kernel C is cyclic of order l if and only

if Φl(jE′ , jE) = 0. Furthermore, jE′ ∈ Fqr if and only if the kernel C is a one

dimensional eigenspace of ϕr in E[l].

The above theorem provides a way to classify l as an Elkies or an Atkin prime.
If Φl(x, jE) = 0 has a root in Fq, then l is an Elkies prime, otherwise l is an Atkin

prime. Note that the degree of Φl(x, jE) is l + 1.
The following theorem by Atkin is the actual heart of the SEA algorithm. A

proof of the theorem can be found in Schoof [32].

Theorem 2.2 (Atkin). Let E be a non-supersingular elliptic curve defined over Fq

and let Φl(x, jE) = h1h2 · · ·hs be the factorization of Φl(x, jE) ∈ Fq[x] as a product
of irreducible polynomials. Then there are the following possibilities for the degrees

of h1, . . . , hs:

1. (1, l) or (1,1, . . .1) — in either case we have t2 − 4q ≡ 0 mod l. In the

former we set r = l and in the latter r = 1.
2. (1,1, r, r, . . . , r) — in this case t2 − 4q is square modulo l, r divides l − 1

and ϕl acts on E[l] as a diagonal matrix

(

λ 0
0 µ

)

with λ, µ ∈ F∗l .

3. (r, r, . . . , r) for some r > 1 — in this case t2 − 4q is a non-square modulo l,
r divides l + 1 and ϕl has an irreducible characteristic polynomial over Fl.
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In all cases r is the order of ϕl in the projective general linear group PGL2(Fl) and
the trace of Frobenius t satisfies

(2.10) t2 = q(ξ + ξ−1)2 mod l,

for some primitive r-th root of unity ξ ∈ Fl.

Note that Equation (2.10) limits the number of possible values for t mod l to
φEul(r), where φEul is the Euler totient function. To determine the exact value
of t, one merges the information found from both types of primes using a baby-step
giant-step strategy called the match and sort algorithm. A detailed description can
be found in Müller’s thesis [27].

The original Schoof algorithm, combined with the above improvements of Elkies
and Atkin, is called the SEA algorithm and has complexity O(log6 q). Theorems 2.1
and 2.2 directly lead to Algorithm 2.1, which we describe in more detail in the
following section.

Algorithm 2.1 (SEA).

IN: Elliptic curve Ea : y2 + xy = x3 + a over Fq

OUT: The order #Ea(Fq) of Ea(Fq)

1. l = 2, MA = 1, A = {}, ME = 1 and E = {}
2. While (ME ×MA < 4

√
q) do:

3. Compute the modular polynomial Φl(x, y)
4. Find the splitting of Φl(x, ja)
5. If l is an Elkies prime then do:

6. Find a zero jb of Φl(x, ja) in Fq

7. Determine an isogenie Il : Ea −→ Eb and gl
8. Find an eigenvalue λ of ϕl in Fl

9. t = λ+ q/λ mod l
10. E = E ∪ {(t, l)}, ME = ME × l
11. else l is an Atkin prime, then do:

12. Determine the set Tl of possible values for t mod l
13. A = A ∪ {(Tl, l)}, MA = MA × l
14. l = nextprime(l)
15. Use match and sort algorithm to determine t
16. Return #Ea(Fq) = q + 1− t.

3. Optimizations in characteristic 2

3.1. Computing modular polynomials Φl(x, y). The SEA algorithm computes
information about the Frobenius trace modulo odd primes l based on the splitting
of the l-th modular polynomial over Fq. We know that Φl(x, y) is the reduction of
the l-th modular polynomial over C modulo the characteristic of the field. Thus, in
this section we briefly recall the notion of modular polynomials over C and describe
a very space- and time-efficient algorithm for computing these in characteristic
two, based on an algorithm by Müller [4]. The proofs of the properties of these
polynomials can be found in [30], [32] and [35].
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It can be shown that an elliptic curve over C is isomorphic to C/L, where L =
Z + Zτ is a two-dimensional lattice in C. The parameter τ can be chosen to lie
in the upper half of the complex plane H = {z ∈ C | =(z) > 0}. In this way we
can consider the j-invariant of the corresponding elliptic curve Eτ as a function
on H and set j(τ) = j(Eτ ). Because the function j(τ) is invariant under SL2(Z)
transformations, it is sufficient to consider the restriction of j(τ) to the fundamental
domain

(3.1) F = {z ∈ C | =(z) > 0,−1/2 ≤ <(z) < 1/2, |z| ≥ 1}.
Furthermore j(τ) is periodic of period one and has the Laurent series

(3.2) j(τ) =
1

q
+ 744 +

∑

n≥1

cnq
n,

where q = e2πiτ and cn are positive integers. This Laurent series can be computed
by using the relation between j(τ) and ∆(τ), where ∆(τ) is the discriminant of Eτ

and has q-expansion

(3.3) ∆(τ) = q
∏

n≥1

(1− qn)24 = q



1 +
∑

n≥1

(−1)n
(

qn(3n−1)/2 + qn(3n+1)/2
)





24

.

The relation between j(τ) and ∆(τ) is given by the formula

(3.4) j(τ) =
(256f(τ) + 1)

3

f(τ)
,

where f(τ) = ∆(2τ)
∆(τ) .

Define the l-th modular polynomial by the equation

(3.5) Φl(x, j) = (x− j(lτ))

l−1
∏

i=0

(

x− j

(

τ + i

l

))

,

then we know that Φl ∈ Z[j][x] and, considered as a polynomial in two variables
Φl(x, y) ∈ Z[x, y], is symmetric and has degree l+1. Furthermore, Φl(x, y) has the
following structure:

(3.6) xl+1 − xlyl + yl+1 +R ,

where R is of the form
∑

aijx
iyj , with i, j ≤ l, i+ j < 2l, aij ∈ Z. Reduced modulo

two, this gives us the l-th modular polynomial Φl(x, y) over Fq as in Theorem 2.1.
The computation of these polynomials is based on the reduced q-expansion of

j(τ) and j(lτ) and the equality

(3.7) Φl(j(lτ), j(τ)) = 0.

Equation (3.4) reduced modulo two leads to

(3.8) (τ) =
∆(τ)

∆(2τ)
= q−1

1 +
∑

n≥1 q
4n(3n−1) + q4n(3n+1)

1 +
∑

n≥1 q
16n(3n−1) + q16n(3n+1)

.

The q-expansion of (lτ) is obtained by substituting ql for q in the q-expansion of
(τ). Now we can compute the l-th modular polynomial

(3.9) Φl(x, y) =
l+1
∑

i=0

l+1
∑

j=0

aijx
iyi, aij ∈ F2
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by systematically comparing leading powers in the q-expansion of

(3.10) l+1(τ) + l+1(lτ) =

l
∑

i=0

l
∑

j=0

aij
i(lτ)j(τ).

The leading power of i(lτ)j(τ) equals −(j + il) and because of the symmetry of
Φl(x, y), we have aij = aji. The set S = {(j + il, i + jl) | 0 ≤ i ≤ j ≤ l} can be
given a strictly decreasing order by sorting on max(j + il, i + jl). Rewriting the
right hand side of Equation (3.10) in this order, leads to the following algorithm:

Algorithm 3.1 (Modular Polynomial).

IN: Prime l
OUT: Modular polynomial Φl(x, y)

1. Determine (τ) with precision l(l + 1) + 1 using Equation (3.8)

2. Compute i(τ) for 1 < i ≤ l + 1
3. Determine j(lτ) by substituting ql in j(τ) for 1 ≤ j ≤ l + 1
4. Set L = l+1(τ) + l+1(lτ)
5. Set A = 0, where A[i, j] = aij
6. Set A[l + 1, 0] = A[0, l + 1] = 1
7. While (p(L) < 0), where p(L) is the leading power of L, do

8. Determine the pair (i, j), with p(L) = −max(j + il, i+ jl)
9. Set A[i, j] = A[j, i] = 1

10. If (i = j) then do L = L+ i(lτ)j(τ)
11. else set L = L+ i(lτ)j(τ) + j(lτ)i(τ)

12. Return
∑i=l+1

i=0

∑j=l+1
j=0 A[i, j]xiyi

The following tricks can be used to improve the time and space efficiency:

– Every power occurring in the reduced q-expansion of (τ) given by Equa-
tion (3.8) is congruent to −1 modulo 8, as illustrated by the first few terms

(3.11) (τ) =
1

q
+ q7 + q15 + q31 + q47 + q55 + · · · .

Therefore it is natural to represent every reduced power series S as

(3.12) S = q−vs
∑

n≥0

snq
msn,

with vs ∈ Z,ms ∈ N0, sn ∈ F2 and s0 = 1. Furthermore, to obtain the most space-
efficient representation, ms is taken as large as possible, i.e., ms is the greatest
common divisor of the powers occurring in the shifted power series qvsS. For
instance, the reduced q-expansion of (τ) can be written as (τ) = q−1

∑

n≥0 nq
8n,

with n ∈ F2.
Now consider the arithmetic of these series:

• Addition: C = A+B, then vc ≤ max(va, vb) and mc = gcd(va−vb,ma,mb).
• Multiplication: C = A ·B, then vc = va + vb and mc = gcd(ma,mb).
• Squaring: C = A2, then vc = 2va and mc = 2ma.
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Table 1. Running time (s) on a Pentium III 600 MHz and memory
usage (MB) for Algorithm 3.1

B 100 300 500 750 1000 2000

Precomp. (τ) with p = B(B + 1) + 1 0 0.01 0.07 0.34 1.18 22.4
Precomp. i(τ) for i = 2, . . . , B 0.02 1.99 21.9 161 772 26651
Compute Φl(x, y) for all l < B 0.05 6.58 79.9 598 2649 108144

Total Time 0.07 8.60 101 759 3423 135442
Memory usage 0.61 0.98 1.28 4.08 8.75 62.7

• Inversion: C = 1/A, then vc = −va and mc = ma.

Thus a power series S can be represented as a triple (vs,ms, Cs), where Cs is a
bit-array which contains the coefficients sn. When working with precision p, the
length of this array equals dp/mse.

– With the above representation, squaring a power series A actually is free and
so is computing every 2n-th power B = A2

n

, because we only need to set vb = 2nva,
mb = 2nma and take the bit-array Cb equal to the first dp/mbe elements in Ca. So,
instead of computing i(τ) for 1 < i ≤ l + 1 in step 2, it suffices to compute only
the odd powers of .

– In step 8 we need the unique pair (i, j), with p(L) = −max(j+ il, i+ jl). One
easily verifies that j = b−p(L)/lc and i = −p(L)− jl satisfy these conditions.

In Table 1 we give running times and memory usage for the computation of
Φl(x, y) for all primes l ≤ B, obtained on a Pentium III 600 MHz. Because for
every l we need the q-series of i(τ) for 1 ≤ i ≤ l+ 1 with precision l(l+ 1) + 1, we
first precompute these powers with precision B(B+1)+1. Note that if we had used
a list containing only the powers of the non-zero terms, i.e., the conventional sparse
series representation, the memory usage for computing Φl(x, y) for all l < 2000
would exceed 2 GB. Furthermore, the running times would be a factor 100 slower.

3.2. Determining the splitting of Φl(x, ja). Theorem 2.2 classifies l as an Elkies
prime iff Φl(x, ja) has a root in Fq. Because every element of Fq is a zero of xq −x,
l is an Elkies prime iff the degree of

(3.13) gcd
(

xq − x,Φl(x, ja)
)

equals 1, 2 or l + 1. This gcd computation needs xq mod Φl(x, ja), which is one of
the dominant steps in the SEA algorithm, so it should be implemented as efficiently
as possible.

The best known algorithm is one by Kaltofen and Shoup [14] and uses a combina-

tion of modular composition and squaring. Define βj ≡ x2
j ≡∑d−1

i=0 cix
i mod f(x),

with d = deg(f), then we need xq ≡ βn mod f(x). Note that β2j ≡ β2
j

j mod f(x)
and

β2
j

j ≡
(

d−1
∑

i=0

cix
i

)2j

≡
d−1
∑

i=0

c2
j

i β
i
j mod f(x),

(3.14)
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so we can compute β2j using βj with d modular compositions over F2 and one
modular composition over Fq. Starting with j = bn/2c, the algorithm recursively
computes βj and if n = 2j it finishes with βn ≡ β2j mod f(x), else we have
n = 2j + 1 and βn ≡ β22j mod f(x).

The algorithm by Brent and Kung [3] for polynomial modular composition
has complexity O(d1.69) and the product of two Fq elements can be computed
in O(n log n log log n) bit operations. This leads to a total cost of

(3.15) O(d1.69n log2 n log log n+ dn1.69 log n)

bit operations for computing xq mod f(x). Note that this algorithm is faster
than repeated modular squaring provided d is small compared to n. The data
in Section 4 show that this is always the case in the SEA algorithm because the
maximal prime lmax used is about n/2.

For an Atkin prime l we need the equal degree r of the irreducible factors of
Φl(x, ja). Obviously r|l + 1, because Φl(x, ja) has degree l + 1, but a theorem by
Schoof [32] states that the number of irreducible factors s = (l + 1)/r satisfies

(3.16) (−1)s =
(q

l

)

.

This theorem limits the possibilities for r to the set R = {ρ ∈ N |
(

q
l

)

= (−1)
l+1
ρ }.

For nonnegative integers a and b, the polynomial xq
a − xq

b

is divisible precisely
by the irreducible polynomials in Fq[x] whose degree divides a−b. This fact follows,
for example, from [20, Theorem 3.20]. Let B be the largest integer in R strictly

smaller than max(R), k = b
√
Bc and m = dB/ke, then it is sufficient to test for all

integers i = k, . . . , 1 and j = 1, . . . ,m if

(3.17) xq
jk ≡ xq

i

mod Φl(x, ja).

When a match occurs, we set r = jk − i else r = max(R). The algorithm needs

k modular compositions xq
i ◦ xq and at most m modular compositions xq

jk ◦ xqk .
Using the algorithm of Brent and Kung this leads to a total complexity of O(l2.19)

Fq operations, because both k and m are O(
√
l) and deg(Φl(x, ja)) = l + 1.

3.3. Computing isogenies over F2n . Currently three algorithms exist to com-
pute an isogenie I between two elliptic curves Ea and Eb over F2n . A first algorithm
was proposed by Couveignes [6] and works in the formal group defined by Ea. Al-
though it has complexity O(l3), it turns out to be quite slow in practice, because
of the huge series computations involved.

The second algorithm was proposed by Lercier [18] and is based on the fact that
I ◦ [2]a = [2]b ◦ I. It only works in characteristic two and performs much better in
practice than Couveignes’ algorithm. By using algebraic properties it determines
a set of non-linear equations in binary variables, which eventually leads to the
construction of the isogenie I. We combined this algorithm with some heuristic
improvements which become important for large primes l. Accurate statistics are
given in Section 4 and show that our implementation reduces the time for isogenie
computations to a negligible 1.5% of the total running time of the SEA algorithm.

A third algorithm also by Couveignes [7] and valid over any field characteristic p,
consists in computing Ea[p

k] and Eb[p
k] and is based on the fact that I(Ea[p

k]) =
Eb[p

k]. Using fast multiplication techniques, the complexity drops to O(l2), but
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since all computations take place in an extension of degree pk−1(p− 1)/2 it is not
obvious to implement this algorithm efficiently in practice.

3.4. Looking for an eigenvalue. If l is an Elkies prime, there exists at least one
cyclic subgroup Ci ⊂ Ea[l] of order l which is stable under the Frobenius-morphism,
i.e., ϕl(P ) = λP for all P ∈ C and 1 ≤ λ ≤ l−1. Using Theorem 2.1 we can compute
an isogenie Il : Ea −→ E′a with ker (Il) = Ci. The construction of this isogenie
results in a polynomial gl that vanishes on all the non-zero x-coordinates of points
in Ci. Hence, to find this eigenvalue we simply test for which integer 1 ≤ λ ≤ l− 1
the equation (xq, yq) = [λ](x, y) holds in the ring Fq[x, y]/(gl(x), y

2 + xy− x3 − a).
Müller [21] proposed a multiplicative version of the baby-step giant-step algo-

rithm, by writing λ as a fraction of two smaller integers modulo l. It turns out that
every element of the set {0, . . . , l − 1} can be written as

(3.18) ± i

j
mod l i, j ∈ [0, B],

where B = b
√
lc. Thus the search for λ is replaced by the search for the pair (i, j)

and the correct sign s such that

(3.19) [j](xq, yq) = s[i](x, y) mod (gl(x), y
2 + xy − x3 − a).

To avoid the costly computation of yq in the ring Fq[x, y]/(gl(x), y
2 + xy− x3 −

a), we only compute the x-coordinates of both sides of Equation (3.19) using the
following theorem by Koblitz [16].

Theorem 3.1. Let fn denote the n-th division polynomial, P = (x, y) ∈ E \E[n],
then for n ≥ 2
(3.20)

nP =

(

x+
fn−1fn+1

f2n
, x+ y +

fn−1fn+1
f2n

+
fn−2f

2
n+1

xf3n
+ (x2 + y)

fn−1fn+1
xf2n

)

.

Using only the x-coordinates has the disadvantage that we no longer can dis-
tinguish between a point P and its negative −P , because both have the same
x-coordinate. Thus we can only determine the eigenvalue up to the sign.

In each step of the algorithm we have to test for a given integer j ≤ B whether

(3.21)
Aj(x

q)

Bj(xq)
≡ Ai(x)

Bi(x)
mod gl(x)

for 1 ≤ i ≤ B. The obvious way is to multiply out denominators and check for
equality of Aj(x

q)Bi(x)−Ai(x)Bj(x
q) ≡ 0 mod gl(x), which requires 2B modular

multiplications for every 1 ≤ j ≤ B.
To speed up this process, we use a variant of a probabilistic method by Shoup [34].

Suppose deg(gl) = d and that all polynomials Aj , Bj , Ai, Bi are reduced modulo gl.
Then we define the linear mapping

(3.22) M : Fq[x]/(gl(x)) −→ Fq : f(x) 7→ f(0),

so M maps every polynomial to its constant term. Obviously, the map M is linear
and #ker(M) = qd−1. This means that a non-zero polynomial f(x) 6≡ 0 mod gl(x)
will have a non-zero image under M with probability about 1 − 1/q. Because in
our case q is at least 2150, this probability is very high. Thus the map M can be
used to check Equation (3.21) with a very high probability by testing whether

(3.23) M (Aj(x
q)Bi(x) mod gl(x)) = M (Ai(x)Bj(x

q) mod gl(x)) .
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Note that in every iteration Aj(x
q) and Bj(x

q) are kept constant, whereas Ai(x)
and Bi(x) vary, so we need an efficient way to compute M(A(x)B(x) mod gl(x)),
where A(x) is kept constant. Let A and B be the coefficient vectors of A and B,
then using the linearity of M we get

(3.24) M(A(x)B(x) mod gl(x)) =

d−1
∑

i=0

B[i]M
(

A(x)xi mod gl(x)
)

.

Define the vector MA by MA[i] = M
(

A(x)xi mod gl(x)
)

for 0 ≤ i < d. Then we

can compute M(A(x)B(x) mod gl(x)) as the inner product of the vectors B and
MA. Algorithm 3.2 gives an efficient way to compute MA, which can be verified
by an easy calculation. The complexity of this algorithm is O(d2) Fq-operations,
but it is at least a factor four faster than using the original random linear mapping
proposed by Maurer and Müller [21].

Algorithm 3.2 (Compute MA).

IN: Polynomial gl(x) of degree d and polynomial A(x) with deg(A) < d
OUT: Vector MA[i] = M

(

A(x)xi mod gl(x)
)

for 0 ≤ i < d

1. Compute Xd, the coefficient vector of xd mod gl(x)
2. Set MA[0] = A[0]
3. For i = 1, . . . , d− 1 do:

4. Set MA[i] = A[d− i]×Xd[0]
5. For j = 1, . . . , i− 1 do:

6. MA[i]+ = Xd[d− i+ j]×MA[j]
7. Return MA

The above strategy is very efficient, but only determines the eigenvalue up to the
sign. In most cases we can resolve this non-uniqueness by a theorem of Dewaghe [8].

Theorem 3.2. Let Ea be an elliptic curve over Fq given by the equation y2+xy =

x3 + a, l an odd prime and gl =
∑d

i=0 gix
i a factor of degree d = (l − 1)/2 of

fl corresponding to an eigenvalue λ and a cyclic subgroup C of E[l]. Suppose

[j]ϕ(P ) = ±[i]P for P ∈ C, then λ ≡ ±λ0 mod l, with λ0 ≡ i/j mod l. Let s be

the semi-order of λ0 in Fl, i.e. the smallest n ∈ N0 such that λn0 ≡ ±1 mod l and
gl =

∑r
i=0 gix

i be a factor of gl of degree s. If s is odd, then

(3.25) λ =

{

λs0λ0 if Tr
(

gs−1 + a
g2
1

g2
0

)

= 0

−λs0λ0 otherwise.

If l ≡ 3 mod 4 we can take gl = gl, so the above theorem provides a very efficient
way to determine the correct sign of the eigenvalue. Otherwise l ≡ 1 mod 4 and
if s is odd, we could find the sign by computing a factor gl of degree s. If s is
even, we still have to compare the y-coordinates of [j]ϕ(P ) and [i]P , so we need
yq mod (gl(x), y

2 + xy − x3 − a). Usually this is done by iterated squaring and
substitution of y2 ≡ (x3 + a) + xy mod (gl(x), y

2 + xy− x3 − a). However, an easy



THE SEA ALGORITHM IN CHARACTERISTIC 2 11

calculation shows that

(3.26) yq ≡ xq
n−1
∑

i=0

(

x+ ax−2
)2i

+ xq−1y mod (gl(x), y
2 + xy − x3 − a),

which can be computed by evaluating a trace-like map of x + ax−2 mod gl(x),
using an efficient algorithm by Kaltofen and Shoup [14]. Not only is this algorithm
more efficient than iterated squaring, it also generates xq mod gl(x), which we need
anyway in the search for the eigenvalue. Thus, whenever l ≡ 1 mod 4 we compute
xq mod gl(x) and yq mod gl(x) at once, find ±λ and compare the y-coordinates of
[j]ϕ(P ) and [i]P to determine the correct sign. This strategy is even faster than
factoring in the case where s is odd. Finally, note that x−1 mod gl(x) exists because
l is an odd prime.

Algorithm 3.3 (Find Eigenvalue).

IN: Odd prime l and polynomial gl(x) =
∏

±P∈E[l]∗
λ
(x− x(P ))

OUT: Eigenvalue λ

1. Set B = b
√
lc

2. For i = 1, . . . , B do:

3. Compute and store the x-coordinate of

i(x, y) mod gl(x) as
Ai(x)
Bi(x)

mod gl(x)

4. For j = 1, . . . , B do:

5. Compute the x-coordinate of j(xq, yq) as
Aj(x

q)
Bj(xq)

mod gl(x)

6. Compute MAj
and MBj

7. For i = 1, . . . , B do:

8. If MAj
⊗Bi ≡MBj

⊗Ai then

9. If Aj(x
q)Bi(x)−Ai(x)Bj(x

q) ≡ 0 mod gl(x) then

10. set λ0 ≡ ij−1 mod l and break

11. Compute sign of λ using Theorem 3.2 or Equation (3.26)

12. Return λ

4. Implementation and results

The SEA algorithm with the above optimizations was implemented as part of
C++PEC (Counting Points on Elliptic Curves), a package which was developed during
the author’s master thesis [37]. The program is written in standard C++, using
Victor Shoup’s NTL [33] for the finite field arithmetic.

4.1. Elliptic curves and cryptography. The main use of the SEA algorithm
is the generation of cryptographically strong elliptic curves. In this section we
provide timings for computing the number of points on elliptic curves defined over
F2n ∼= F2[t]/(f(t)) in the cryptographic range, i.e. 163 ≤ n ≤ 431. The extension
degrees of the finite fields used are all prime, because of the recent attack by Gaudry,
Hess and Smart [12] and the irreducible polynomial f(t) is either a trinomial or a
pentanomial. All timings were obtained on a Pentium III 600 MHz, with 128 MB
RAM, running Linux as operating system.
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Table 2. Running times (s) for finite fields F2n , 163 ≤ n ≤ 239.

F2163 min avg max

lmax 47 55 67
#E 6 9 12
#A 3 7 12
#C 1.98 6.70 8.10
Frob 3.95 5.69 7.88
Ord 0.2 1.27 2.78
Iso 0.04 0.11 0.23
Eig 0.35 1.02 2.53
Sign 0.06 0.35 0.92
M-S 0.23 0.53 2.85
Total 6.97 9.45 14.1

F2191 min avg max

lmax 53 64 73
#E 6 10 15
#A 2 7 14
#C 2.15 7.54 8.73
Frob 6.11 8.61 11.3
Ord 0.28 1.84 3.32
Iso 0.03 0.17 0.3
Eig 0.46 1.85 6.17
Sign 0.02 0.52 0.99
M-S 0.08 1.08 5.31
Total 10.9 14.7 19.8

F2239 min avg max

lmax 71 80 97
#E 8 12 16
#A 5 9 15
#C 2.40 8.88 9.71
Frob 15.6 22.1 30.3
Ord 0.31 4.13 10.9
Iso 0.14 0.41 0.75
Eig 0.82 3.74 10.9
Sign 0.23 1.15 2.71
M-S 0.46 4.98 20.8
Total 25.2 37.7 56.9

As a first test, we determined the group order of 100 random elliptic curves
y2 + xy = x3 + a over the finite fields F2163 ∼= F2[t]/(t163 + t7 + t6 + t3 + 1),
F2191 ∼= F2[t]/(t191+ t9+1) and F2239 ∼= F2[t]/(t239+ t36+1). Table 2 indicates the
maximum prime used lmax; the number of Elkies (#E) and Atkin (#A) primes;
the 10-log of the number of possibilities (#C) in the match and sort phase; the
cumulated times Frob for computing xq mod f(x), Ord for determining the order
r of ϕl in PGL2(Fl), Iso for computing isogenies, Eig for searching the eigenvalue
in case of an Elkies prime and Sign for computing the sign of the eigenvalue; the
time M-S for the match and sort phase and finally the total time. For each of these
timings, we give minimal, average and maximal values.

Table 2 indicates that in this range the running time of our implementation grows
less than log4 q. The reason for this low practical complexity is twofold: first, NTL
uses fast multiplication techniques and second, in this range the search space in the
match and sort algorithm is large enough to include every Atkin prime. For larger
fields the available search space saturates and therefore the information found from
some of the Atkin primes will be redundant.

A second test consisted in computing the number of points on 50 random
elliptic curves defined over the larger fields F2367 ∼= F2[t]/(t367 + t21 + 1),
F2401 ∼= F2[t]/(t401 + t152 + 1) and F2431 ∼= F2[t]/(t431 + t120 + 1). For these larger
fields the run time grows less than O(log5 q) as indicated by Table 3. Furthermore
Table 2 and 3 suggest that, although the practical complexity differs in both ranges,
the percentage of time taken up by the different sub-algorithms stays constant.

The main constraint for an elliptic curve Ea over Fq to be secure is that the group
order #Ea(Fq) should be divisible by a large prime. Every elliptic curve of the form
y2 + xy = x3 + a has a point Pa = ( 4

√
a,
√
a) of order 4 so the cryptographically

strongest curves are those with #Ea(Fq) = 4p, where p is prime. Because for
every Elkies prime l we compute t mod l, we can check if #Ea(Fq) = q + 1 − t is
divisible by l. In this case we conclude that the curve Ea will not be suitable for
cryptographic purposes and continue with the next curve. This technique is called
the early abort strategy [19] and works well because if #Ea(Fq) is not nearly prime,
then most times it is divisible by a small prime.
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Table 3. Running times (s) for finite fields F2n , 367 ≤ n ≤ 431.

F2367 min avg max

lmax 109 147 191
#E 15 19 22
#A 7 15 26
#C 7.25 10.2 10.8
Frob 153 268 518
Ord 16.4 82.7 215
Iso 2.6 4.72 10.7
Eig 10.4 24.1 49.5
Sign 1.08 16.7 37.3
M-S 4.11 52.8 148
Total 242 457 886

F2401 min avg max

lmax 113 164 197
#E 18 21 24
#A 9 17 25
#C 8.62 10.4 11.2
Frob 197 424 710
Ord 40.0 127 362
Iso 2.55 7.64 15.0
Eig 11.6 35.6 73.0
Sign 11.2 28.0 58.8
M-S 11.7 68.7 174
Total 350 704 1179

F2431 min avg max

lmax 137 180 233
#E 19 22 26
#A 9 19 30
#C 7.72 10.4 10.9
Frob 266 597 1115
Ord 20.8 174 443
Iso 4.56 12.0 25.1
Eig 25.9 49.2 97.6
Sign 15.4 38.8 79.2
M-S 6.21 80.4 221
Total 447 967 1790

Table 4. Statistics for the early abort strategy on a Pentium III 600 MHz.

Number of curves with F2163 F2191 F2239 F2307 F2367 F2401 F2431
8 | #Ea(Fq) 506 502 498 518 480 505 496
3 | #Ea(Fq) 265 233 237 249 372 237 262
5 | #Ea(Fq) 55 69 60 56 64 60 64
7 | #Ea(Fq) 24 31 25 28 37 37 34
11 | #Ea(Fq) 13 24 14 20 15 19 7
13 | #Ea(Fq) 12 16 17 9 15 12 9

l | #Ea(Fq), 13 < l ≤ lmax 34 50 63 44 48 59 61
l | #Ea(Fq), lmax < l 91 75 86 76 69 71 67

#Ea(Fq) = 4p 7 3 6 4 1 0 6
Total time (h): 0.32 0.51 1.27 4.47 14.7 22.3 30.3

In the third test, we used this strategy to search for elliptic curves with nearly
prime cardinality over the fields defined above. For each field we tested 1000 ran-
dom curves and determined the smallest Elkies prime l which divides the group
order. When the cardinality of a curve Ea was computed completely, we checked if
#Ea(Fq) factors as 4p, with p prime.

Table 4 shows that about 80% of the curves are detected as being bad curves
within one second and that only 0.5% of the curves have an optimal cardinality.
Furthermore, whilst searching for cryptographically strong elliptic curves, the use
of the early abort strategy results in a speed-up of a factor 8 over the naive method.

4.2. A 1999-bit elliptic curve. To illustrate the efficiency of our implementation
and to study the behavior of the algorithm for huge finite fields, we counted the
number of points on a 1999-bit elliptic curve. More precisely, let E be the elliptic
curve over F21999 ∼= F2[t]/(t1999 + t367 + 1) defined by

(4.1) y2 + xy = x3 + t19 + t18 + t17 + t16 + t14 + t13 + t12 + t8 + t5,
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Elkies Primes Atkin Primes

xq mod Φ(x, ja) 11.88
Isogenie I 5.743

Check isogenie 1.069
xq mod I 3.396
Eigenvalue 3.540

Sign 4.513
Total 30.36

xq mod Φ(x, ja) 15.46
Equal degree r 17.60

Total 33.22

Table 5. Run time (days) for a 1999-bit elliptic curve on a Pentium II 400 MHz.

then #E(F21999) = 21999 + 1− c with

c =15140590823062118077410730656771261933417472134578825932684077308078

87725567976413301664251154851642664418475125200062722605654806080809

31038232717000888586683383587164903014971913656773213078017697361674

87857596691396500232121738409763947661495494688487031784055606249873

40222521771547219158440743937.

The computation was distributed using a simple bash script over a network of
10 Pentium II 400 MHz all running Linux, where PC i determined c mod l10·k+i,
with ls the s-th prime and s ≤ 200. The total run time on one Pentium II would
have been about 65 days, of which most of the time was spent on computing the
splitting of the modular polynomials as shown in Table 5.

We computed information about c mod l for primes up to 1223, of which 96
were Elkies primes and 104 Atkin primes. To merge the information found from
both types of primes, a variant of the Chinese & Match algorithm [13] was used to
search among the 2.6 1013 remaining possibilities for c. The computation took 2.16
days to complete on one Pentium II 400 MHz and used 29 MB of main memory.
This algorithm retains the candidates for c which satisfy all the congruences found
from the Atkin and Elkies primes. To speed up the algorithm we implemented
a phased variant based on a probabilistic argument. In the first phase, we only
used 25 Atkin primes to limit the possibilities for c, then in a second phase, we
further refined these possibilities by using 35 Atkin primes. Finally, we checked
the remaining candidates against the other Atkin primes, which left us with 319
possibilities for c. A simple exhaustive search then completed the computation with
the result given above. This result was further verified by computing c mod l for
larger primes l until enough Elkies primes were found to recover c uniquely from
the Chinese Remainder Theorem.

5. Conclusion

In this article we have described various optimizations of the Schoof-Elkies-Atkin
algorithm specific for the characteristic two case. We presented a very space- and
time-efficient algorithm for computing modular polynomials in characteristic two
and for searching the eigenvalue in the Elkies case.

With our implementation we were able to compute the number of points on an
elliptic curve defined over F21999 , which is the largest point-counting computation
to date. Furthermore, counting the number of points on an elliptic curve over F2163
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takes less than 10 seconds on a Pentium III 600 MHz and with the early abort
strategy we can test 1000 such curves in about 20 minutes. This indicates that the
cost of generating cryptographically secure elliptic curves no longer is prohibitive
in implementing elliptic curve cryptosystems.
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