EXTENSIONS OF KEDLAYA’S ALGORITHM

Frederik Vercauteren
frederik@cs.bris.ac.uk

Jan Denef
jan.denef@wis.kuleuven.ac.be

University of Leuven
http://www.arehcc.com
University of Bristol
Overview

- “Who’s who” of p-adic point counting
- Zeta functions and Weil conjectures
- Monsky-Washnitzer cohomology
- Kedlaya’s algorithm for hyperelliptic curves in characteristic 2
- Kedlaya’s algorithm for $C_{a,b}$ curves
- Experimental results
- Conclusions and open problems
“Who’s who” of p-adic point counting

<table>
<thead>
<tr>
<th>Elliptic Curves over \mathbb{F}_{p^n}</th>
<th>p</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satoh</td>
<td>$p \geq 5$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>Skjernaa</td>
<td>$p = 2$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>Fouquet-Gaudry-Harley</td>
<td>$p = 2, 3$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>Vercauteren</td>
<td>all p</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Mestre-Harley (AGM)</td>
<td>$p = 2$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Satoh-Skjernaa-Taguchi</td>
<td>all p</td>
<td>$O(n^{2+1/2+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Gaudry</td>
<td>$p = 2$</td>
<td>$O(n^{2+1/2+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Carls</td>
<td>all p</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Harley</td>
<td>all p</td>
<td>$O(n^{2+1/2+\varepsilon})$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>
“Who’s who” of p-adic point counting

<table>
<thead>
<tr>
<th>Hyperelliptic curves over \mathbb{F}_{p^n}</th>
<th>p</th>
<th>Time</th>
<th>Space</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kedlaya</td>
<td>$p \geq 3$</td>
<td>$O(g^{4+\varepsilon} n^{3+\varepsilon})$</td>
<td>$O(g^3 n^3)$</td>
<td>all g</td>
</tr>
<tr>
<td>Mestre-Gaudry-Harley</td>
<td>$p = 2$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^2)$</td>
<td>$g = 2$ (O)</td>
</tr>
<tr>
<td>Lauder-Wan</td>
<td>all p</td>
<td>$O(g^{5+\varepsilon} n^{3+\varepsilon})$</td>
<td>$O(g^3 n^3)$</td>
<td>all g (AS)</td>
</tr>
<tr>
<td>Denef-Vercauteren</td>
<td>$p = 2$</td>
<td>$O(g^{4+\varepsilon} n^{3+\varepsilon})$</td>
<td>$O(g^3 n^3)$</td>
<td>all g</td>
</tr>
<tr>
<td>Mestre-Lercier-Lubicz</td>
<td>$p = 2$</td>
<td>$O(n^{3+\varepsilon})$</td>
<td>$O(n^2)$</td>
<td>$g = 2$ (O)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Superelliptic curves over \mathbb{F}_{p^n}</th>
<th>p</th>
<th>Time</th>
<th>Space</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaudry-Gürel</td>
<td>all p</td>
<td>$O(g^{4+\varepsilon} n^{3+\varepsilon})$</td>
<td>$O(g^3 n^3)$</td>
<td>all g</td>
</tr>
<tr>
<td>Lauder</td>
<td>all p</td>
<td>$O(g^{4+\varepsilon} n^{3+\varepsilon})$</td>
<td>$O(g^3 n^3)$</td>
<td>$a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$C_{a,b}$ curves over \mathbb{F}_{p^n}</th>
<th>p</th>
<th>Time</th>
<th>Space</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denef-Vercauteren</td>
<td>all p</td>
<td>$O(g^{5+\varepsilon} n^{3+\varepsilon})$</td>
<td>$O(g^3 n^3)$</td>
<td>all g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algebraic varieties over \mathbb{F}_{p^n}</th>
<th>p</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauder-Wan</td>
<td>all p</td>
<td>Polynomial</td>
<td>Polynomial</td>
</tr>
</tbody>
</table>
The Zeta Function and Weil Conjectures

Let \(\tilde{C} \) be a smooth projective curve over \(\mathbb{F}_q \), then the zeta function of \(\tilde{C} \) is

\[
Z(t) = Z(\tilde{C}; t) = \exp \left(\sum_{r=1}^{\infty} N_r \frac{t^r}{r} \right)
\]

with \(N_r \) the number of points on \(\tilde{C} \) with coordinates in \(\mathbb{F}_{q^r} \).

Weil Conjectures:

- \(Z(t) \) is a rational function over \(\mathbb{Z} \) and can be written as \(\frac{P(t)}{(1-t)(1-qt)} \)
- \(P(t) = \prod_{i=1}^{2g} (1 - \alpha_i t) \) with \(g \) genus of \(\tilde{C} \) and \(|\alpha_i| = \sqrt{q} \)
- \(P(t) = \sum_{i=0}^{2g} a_i t^i \) with \(a_0 = 1 \), \(a_{2g} = q^g \) and \(a_{g+i} = q^i a_{g-i} \)
- \(N_r = q^r + 1 - \sum_{i=0}^{2g} \alpha_i^r \) and \(P(1) \) is the order of \(\text{Jac}(\tilde{C}/\mathbb{F}_q) \)
Unramified Extensions of p-adics

- K extension of \mathbb{Q}_p of degree n with valuation ring R and maximal ideal $M_R = \{ x \in K \mid |x|_p < 1 \}$ of R.

- K is called unramified iff its residue field $R/M_R \cong \mathbb{F}_q$.

- Let $\mathbb{F}_q \cong \mathbb{F}_p[t]/(\overline{Q}(t))$ then K can be constructed as

 $$K \cong \mathbb{Q}_p[t]/(Q(t)),$$

 with $Q(t)$ any lift of $\overline{Q}(t)$ to $\mathbb{Z}_p[t]$.

- Galois group of K over \mathbb{Q}_p is cyclic with generator Frobenius substitution σ and σ modulo M_R equals small Frobenius on \mathbb{F}_q.
Computing Zeta Function - General Strategy

- \(\overline{X} \) smooth affine variety over \(\mathbb{F}_q \) of dimension \(d \).

- Monsky and Washnitzer construct \(K \)-vectorspaces \(H^i(\overline{X}/K) \) with an induced action of Frobenius \(F_* \) on it such that these cohomology groups satisfy a Lefschetz trace formula:

\[
N_r = \sum_{i=0}^{d} (-1)^i \text{Tr} \left((q^d F_*^{-1})^r | H^i(\overline{X}/K) \right)
\]

- For smooth affine curve \(\overline{C} \) the only non-trivial MW cohomology groups are \(H^0(\overline{C}/K) \) and \(H^1(\overline{C}/K) \), so

\[
\#\overline{C}(\mathbb{F}_{q^r}) = q^r - \text{Trace} \left((q F_*^{-1})^r | H^1(\overline{C}/K) \right)
\]
Hyperelliptic Curves

- Hyperelliptic curve \overline{C} of genus g over finite field \mathbb{F}_q,

$$\overline{C} : y^2 + \overline{h}(x)y = \overline{f}(x)$$

where $\deg \overline{h} \leq g$, \overline{f} monic, $\deg \overline{f} = 2g + 1$ and \overline{C} non-singular.

- If $\text{char } \mathbb{F}_q > 2$ one can take $\overline{h} = 0$ and \overline{f} has to be squarefree.

- Jacobian $\text{Jac}(\overline{C}/\mathbb{F}_q)$ is abelian group associated with \overline{C} which is quotient group of degree 0 divisors by principal divisors.

- Problem: compute order of $\text{Jac}(\overline{C}/\mathbb{F}_q)$.

Kedlaya in Characteristic 2 - Isomorphic Curve

- Given the hyperelliptic curve $\overline{C}: y^2 + \overline{h}(x)y = \overline{f}(x)$, let $\overline{\theta}_i \in \overline{F}_q$ for $i = 0, \ldots, s$ be the different zeros of $\overline{h}(x)$.
- Define the polynomial $\overline{H}(x) = \prod_{i=0}^{s}(x - \overline{\theta}_i) \in \overline{F}_q[x]$.
- We can assume that $\overline{H}(x) \mid \overline{f}(x)$, since the isomorphism defined by $x \mapsto x$ and $y \mapsto y + \sum_{i=0}^{s} b_i x^i$ transforms the curve in

$$y^2 + \overline{h}(x)y = \overline{f}(x) - \sum_{i=0}^{s} b_i^2 x^{2i} - \overline{h}(x) \sum_{i=0}^{s} b_i x^i.$$

- Compute $b_i \in \overline{F}_q$ such that $f(\overline{\theta}_j) = \sum_{i=0}^{s} b_i^2 \cdot \overline{\theta}_j^{2i}$ for $j = 0, \ldots, s$.
- Note: $(\overline{\theta}_i, 0) \in \overline{C}$ for $i = 0, \ldots, s$ are invariant under involution.
Kedlaya in Characteristic 2 - Lift of Curve

- \(\overline{C}' \) is \(\overline{C} \) minus the points \((\overline{\theta}_i, 0)\) for \(0 \leq i \leq s\) with coordinate ring
 \[
 \overline{A} := \mathbb{F}_{2^n}[x, y, \overline{H}(x)^{-1}] / (y^2 + \overline{h}(x)y - \overline{f}(x)).
 \]

- Take any lift \(H(x) \in R[x] \) of \(\overline{H}(x) \) and lift \(\overline{h}(x) \) and \(\overline{f}(x) \) in such a way that \(H(x)|\overline{h}(x) \) and \(H(x)|\overline{f}(x) \).

- \(C' \) is \(C : y^2 + h(x)y - f(x) = 0 \) minus the points \((\theta_i, 0)\) with \(H(\theta_i) = 0 \) for \(0 \leq i \leq s\) with coordinate ring
 \[
 A := R[x, y, H(x)^{-1}] / (y^2 + h(x)y - f(x)).
 \]

- Note: if \(H(x) \not|f(x) \) then \((\overline{\theta}_i, \sqrt{\overline{f}(\overline{\theta}_i)})\) splits into 2 points \((\theta_i, \pm \sqrt{f(\theta_i)})\) and so \(\dim H^1_{DR}(A/K) \neq \dim H^1(\overline{A}/K) \).
Kedlaya in Characteristic 2 - Dagger Ring

- Let A^\dagger be the dagger ring of A. Any element of A^\dagger can be written as a series $\sum_{k=-\infty}^{\infty} (S_k(x) + T_k(x)y)H(x)^k$, with $\deg S_k, \deg T_k \leq \deg H$.

- The growth condition on the dagger ring implies that the valuation of S_k, T_k grows linearly with $|k|$.

- Lift $\bar{\sigma}$ to an endomorphism σ of A^\dagger by defining it as
 - Frobenius substitution σ on R
 - $x^\sigma = x^2$
 - y^σ by $(y^\sigma)^2 + h(x)^\sigma y^\sigma - f(x)^\sigma = 0$ and $y^\sigma \equiv y^2 \mod 2$.

An approximation for y^σ is computed as a Laurent series

$$\sum_{i=-L_k}^{A_k} (S_i(x) + T_i(x)y)H(x)^i$$

via the Newton iteration

$$W_{k+1} = W_k - \frac{W_k^2 + h(x)^\sigma W_k - f(x)^\sigma}{2W_k + h(x)^\sigma} \mod 2^{k+1}.$$

We can prove tight bounds on the convergence of W_k by

$$A_k \leq 2k \left(\frac{\deg f - 2 \deg h}{\deg H} \right) + 2 \frac{\deg h}{\deg H},$$

$$L_k \leq 4kD - 2D,$$

with D the max multiplicity of the irreducible factors of $\overline{h}(x)$.
Kedlaya in Characteristic 2 - $H^1(\overline{A}/K)$

- Define universal module $D^1(A^\dagger)$ of differentials

$$D^1(A^\dagger) := (A^\dagger \, dx + A^\dagger \, dy)/((2y + h(x)) \, dy + (h'(x)y - f'(x)) \, dx)$$

- Let $d : A^\dagger \rightarrow D^1(A^\dagger)$ be differentiation, then

$$H^1(\overline{A}/K) := D^1(A^\dagger)/d(A^\dagger) \otimes_R K$$

- A differential of the form $d(\alpha)$ with $\alpha \in A^\dagger$ is called exact.

- $H^1(\overline{A}/K)$ is vectorspace over K of dimension $2g + m - 1$, where m is the # points needed to complete \overline{C}' to a projective curve.
Kedlaya in Characteristic 2 - Basis for $H^1(\overline{A}/K)$

- $H^1(\overline{A}/K)$ splits into eigenspaces under involution:
 - invariant part H^1_+ with basis $x^i/H(x)\,dx$ for $0 \leq i < \deg H$
 - anti-invariant part H^1_- with basis $x^i y\,dx$ for $0 \leq i < 2g$

- Note: the invariant part H^1_+ corresponds to the removed points $(\overline{\theta}_i, 0)$ for $i = 0, \ldots, s$, with $s + 1 = \dim H^1_+$.

- Analogous to Kedlaya, we devise reduction formulae to express any differential form on this basis.
Kedlaya in Characteristic 2 - Trace Formula

- The Frobenius σ on A^\dagger induces an action σ_* on $H^1(\overline{A}/K)$ by pullback, i.e. $\sigma_*(d\alpha) = d(\alpha^\sigma)$ with $\alpha \in A^\dagger$.

- The n-fold composite $F_* = \sigma_n^*$ defines a K-linear map on $H^1(\overline{A}/K)$ which commutes with the hyperelliptic involution.

- A consequence of the Lefschetz trace formula is

$$\#\widetilde{C}(\mathbb{F}_{q^r}) = q^r + 1 - \text{Trace}(F^r_*, H^1_-)$$

- The characteristic polynomial $\chi(t)$ of F_* on H^1_- determines the zeta function of \widetilde{C} as

$$Z(\widetilde{C}; t) = \frac{t^{2g} \chi(1/t)}{(1 - t)(1 - qt)}$$
Kedlaya in Characteristic 2 - Zeta Function

• The action of σ_* on a differential form $x^k y \, dx$ is given by
 \[\sigma_*(x^k y \, dx) \equiv 2x^{2k+1}y^\sigma \, dx. \]

• Substituting the approximation for y^σ, we can write $\sigma_*(x^k y \, dx)$ on the basis of $H^1(\overline{A}/K)^-$ using the reduction formulae.

• This gives matrix M which is an approximation of the action of σ_* on $H^1(\overline{A}/K)^-$.

• The polynomial $\chi(t) := t^{2g}P(1/t)$ can then be approximated by the characteristic polynomial of $MM^\sigma \cdots M^{\sigma^{n-1}}$.
Kedlaya’s Algorithm - Complexity

Complexity for genus \(g \) hyperelliptic curve over \(\mathbb{F}_{p^n} \)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Complexity</th>
<th>Space Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Char (p \neq 2): Kedlaya</td>
<td>(O(g^{4+\varepsilon}n^{3+\varepsilon}))</td>
<td>(O(g^3n^3))</td>
</tr>
<tr>
<td>Char 2: Average case</td>
<td>(O(g^{4+\varepsilon}n^{3+\varepsilon}))</td>
<td>(O(g^3n^3))</td>
</tr>
<tr>
<td>Char 2: Worst case</td>
<td>(O(g^{5+\varepsilon}n^{3+\varepsilon}))</td>
<td>(O(g^4n^3))</td>
</tr>
</tbody>
</table>

- Complexity depends on splitting type of \(\overline{h}(x) = \prod_{i=1}^{s}(x - \overline{\theta}_i)^{m_i} \).
- Worst case is \(s \approx g/2 \), \(m_i = 1 \) for \(0 < i < s \) and \(m_s \approx g/2 \).
\(C_{a,b} \) curves

- \(C_{a,b} \) curve \(\overline{C} \) over finite field \(\mathbb{F}_q \),

\[
\overline{C} : y^a + \sum_{i=1}^{a-1} f_i(x)y^i + f_0(x) = 0
\]

where \(\deg f_0(x) = b \), \(a \deg f_i(x) + bi \leq ab \) and \(\gcd(a, b) = 1 \).

- Absolutely irreducible and if smooth genus is \(g = \frac{(a-1)(b-1)}{2} \).

- Unique degree 1 place \(Q \) at infinity and \(v_Q(x) = -a \), \(v_Q(y) = -b \).

- Various subclasses of \(C_{a,b} \) curves:
 - Hyperelliptic curves: \(a = 2 \) and \(b = 2g + 1 \)
 - Superelliptic curves: \(f_i(x) = 0 \) for \(i = 1, \ldots, a - 1 \)
$C_{a,b}$ curves - Lift of Curve

- The affine curve \overline{C} has coordinate ring $\overline{A} := \mathbb{F}_q[x,y]/(\overline{C})$.

- Take arbitrary lifts $f_i(x) \in R[x]$ of $\overline{f}_i(x)$ for $i = 0, \ldots, a - 1$ with $\deg f_i(x) = \deg \overline{f}_i(x)$ and define

\[
C : y^a + \sum_{i=1}^{a-1} f_i(x)y^i + f_0(x) = 0
\]

- Let A^\dagger be the dagger ring of $A := R[x, y]/(C)$.

- Elements of A^\dagger can be represented as $\sum_{l=0}^{a-1} \sum_{k=0}^{+\infty} a_{k,l} x^k y^l$ and the valuation of $a_{k,l}$ grows linearly with k.
\(C_{a,b} \) curves - Frobenius on \(A^\dagger \)

- The necessary conditions on the Frobenius \(\sigma \) on \(A^\dagger \) are

\[x^\sigma \equiv x^p \mod p \quad \text{and} \quad y^\sigma \equiv y^p \mod p \quad \text{and} \quad C^\sigma(x^\sigma, y^\sigma) = 0 \]

- Fixing \(x^\sigma = x^p \) also fixes \(y^\sigma \) as the solution of \(C^\sigma(x^p, y^\sigma) = 0 \), which implies that \(\left(\frac{\partial C(x,y)}{\partial y} \right)^p \) has to be invertible in \(A^\dagger \).

- Main idea: lift Frobenius on \(x \) and \(y \) simultaneously such that denominator in the Newton iteration is invertible in \(A^\dagger \).

- Let \(Z \in A^\dagger \) such that \(x^\sigma = x^p + \alpha Z \) and \(y^\sigma = y^p + \beta Z \), then

\[C^\sigma(x^\sigma, y^\sigma) = C^\sigma(x^p + \alpha Z, y^p + \beta Z) = 0 \quad \text{and} \quad Z \equiv 0 \mod p \]
$C_{a,b}$ curves - Frobenius on A^\dagger

- Let $G(Z) := C^\sigma(x^p + \alpha Z, y^p + \beta Z)$, then $Z_{k+1} = Z_k - \frac{G(Z_k)}{G'(Z_k)}$ with

 $$
 G'(Z) \equiv \alpha \frac{\partial C^\sigma}{\partial x} \bigg|_{(x^p,y^p)} + \beta \frac{\partial C^\sigma}{\partial y} \bigg|_{(x^p,y^p)} + O(Z) \mod p
 $$

- $G'(Z)$ will be invertible in A^\dagger if $G'(Z) \equiv 1 \mod p$ and thus

 $$
 G'(Z) \equiv \alpha \left(\frac{\partial C}{\partial x} \right)^p + \beta \left(\frac{\partial C}{\partial y} \right)^p \equiv 1 \mod p
 $$

- Assume \overline{C} non-singular, then $\frac{\partial \overline{C}}{\partial x}, \frac{\partial \overline{C}}{\partial y}$ and \overline{C} generate unit ideal and using Buchberger’s algorithm we compute $\overline{\alpha}, \overline{\beta}, \overline{\gamma} \in \overline{A}$ with

 $$
 1 = \overline{\alpha} \left(\frac{\partial \overline{C}}{\partial x} \right)^p + \overline{\beta} \left(\frac{\partial \overline{C}}{\partial y} \right)^p + \overline{\gamma \overline{C}}
 $$
\[C_{a,b} \text{ curves - Basis of } H^1(\overline{A}/K) \]

- If \(\overline{C} \) is smooth, then \(2g = (a-1)(b-1) \) and a basis for \(H^1(\overline{A}/K) \)
 \[x^k y^l \, dx \quad \text{for} \quad k = 0, \ldots, b-2 \text{ and } l = 1, \ldots, a-1 \]

- Using equation of the curve: \(x^i y^l \, dx \) or \(x^i y^l \, dy \) for \(0 \leq l < a \)

- Clearly \(d(x^i y^{l+1}) \equiv 0 \) and thus \(x^i y^l \, dy \equiv -\frac{1}{i+1} x^{i-1} y^l \, dx \)

- Differentiating the curve \(C \) leads to the equality
 \[
 \left(\sum_{i=1}^{a-1} f'_i(x) y^i + f'_0(x) \right) \, dx = -(ay^{a-1} + \sum_{i=1}^{a-1} f_i(x) iy^{i-1}) \, dy
 \]
$C_{a,b}$ curves - Reduction Formula

- To reduce $x^i y^l \, dx$ we multiply this equation with $x^j y^l$

 \[
 x^j \left(\sum_{i=1}^{a-1} f'_i(x)y^i + f'_0(x) \right) y^l \, dx = -x^j (ay^{a-1} + \sum_{i=1}^{a-1} f_i(x)i y^{i-1}) y^l \, dy
 \]

 (*)

- Partially integrating the right-hand side to y gives

 \[
 d \left(x^j \left(\frac{a}{a+l} y^{a+l} + \sum_{i=1}^{a-1} \frac{i}{i+l} f_i(x)y^{i+l} \right) \right) \equiv 0
 \]

- This gives an expression for the right-hand side of (*) and thus

 \[
 x^j \left(\sum_{i=1}^{a-1} \frac{l}{i+l} f'_i(x)y^i + f'_0(x) \right) y^l \, dx \equiv jx^{j-1} \left(\frac{a}{a+l} y^a + \sum_{i=1}^{a-1} \frac{i}{i+l} f_i(x)y^i \right) y^l \, dx
 \]
\[C_{a,b}-\text{curves - Zeta Function} \]

- The action of \(\sigma_* \) on a differential form \(x^k y^l dx \) is given by
 \[\sigma_*(x^k y^l \, dx) \equiv (x^\sigma)^k (y^\sigma)^l \, dx^\sigma. \]

- Substituting power series for \(x^\sigma \) and \(y^\sigma \), we can write \(\sigma_*(x^k y^l dx) \) on basis of \(H^1(\overline{A}/K) \) using the reduction formulae.

- This gives matrix \(M \) which is an approximation of the action of \(\sigma_* \) on \(H^1(\overline{A}/K) \).

- The polynomial \(\chi(t) := t^{2g} P(1/t) \) can then be approximated by the characteristic polynomial of \(M M^\sigma \cdots M^{\sigma^{n-1}} \).
Dependence on size of Jacobian

Timings for 180-bit Jacobians of hyperelliptic curves for various genus g and extension degrees n.

<table>
<thead>
<tr>
<th>Genus g</th>
<th>Degree n</th>
<th>Lifting y^σ (s)</th>
<th>Reduction (s)</th>
<th>Total (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>90</td>
<td>69.6</td>
<td>29.5</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>83.4</td>
<td>35.2</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>87.2</td>
<td>45.3</td>
<td>135</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>96.7</td>
<td>50.5</td>
<td>151</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>217</td>
<td>149</td>
<td>369</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>254</td>
<td>232</td>
<td>489</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>385</td>
<td>376</td>
<td>765</td>
</tr>
</tbody>
</table>
Kedlaya in Char 2 - Example: Genus 3 over $\mathbb{F}_{2^{59}}$

Let $\mathbb{F}_{2^{59}}$ be defined as $\mathbb{F}_2[t]/\overline{P}(t)$ with $\overline{P}(t) = t^{59} + t^7 + t^4 + t^2 + 1$ and consider the random hyperelliptic curve C_3 of genus 3 defined by

$$y^2 + \left(\sum_{i=0}^{3} h_ix^i \right)y = x^7 + \sum_{i=0}^{6} f_ix^i,$$

where

$h_0 = 569121E97EB3821 \quad h_1 = 49F340F25EA38A2 \quad h_2 = 2DE854D48D56154 \quad h_3 = 0B6372FF7310443$

$f_0 = 1104FDBEB454C58 \quad f_1 = 0C42689OE5C7481 \quad f_2 = 34967E2EB7D50C3 \quad f_3 = 1F1728AA28C616C$

$f_4 = 1AE177BFE49826A \quad f_5 = 3895A0E400F7D18 \quad f_6 = 6DF634A1E2BFA8E$

The group order of the Jacobian J_{C_3} of C_3 over $\mathbb{F}_{2^{59}}$ is

$$\#J_{\tilde{C}_3} = 2 \cdot 9578097140724339463376232360123160334059170481903949$$

where the last factor is 176-bit prime.
Conclusions & Open Problems

- Now possible to compute the zeta function of hyperelliptic curves and $C_{a,b}$ curves over finite fields of any small characteristic.
- Complexity: $O(g^{4+\varepsilon}n^{3+\varepsilon})$ operations and $O(g^3n^3)$ space.
- Resulting algorithms can be used to generate curves suitable for cryptography, but not as fast as AGM.
- Can we get substantial improvement for ordinary curves?
- Lifting works for arbitrary non-singular affine curves, but how easy is it to write down explicit basis and reduction formulae?
- Golden grail: practical algorithms for large p?