Zeta Functions: the p-adic approach

Frederik Vercauteren
frederik@cs.bris.ac.uk
University of Bristol
Overview

- Zeta functions and Weil conjectures
- Computational approaches
- A nice p-adic cohomology theory for the affine line
- Monsky-Washnitzer cohomology
- An algorithm for $C_{a,b}$ curves
- Experimental results
- Conclusions and open problems
The Zeta Function and Weil Conjectures

Let \overline{C} be smooth projective curve over \mathbb{F}_q, then zeta function of \overline{C} is

$$Z(t) = Z(\overline{C}; t) = \exp \left(\sum_{r=1}^{\infty} N_r \frac{t^r}{r} \right)$$

with N_r the number of points on \overline{C} with coordinates in \mathbb{F}_{q^r}.

Weil Conjectures:

- $Z(t)$ is rational function over \mathbb{Z} and can be written as $\frac{P(t)}{(1-t)(1-qt)}$
- $P(t) = \prod_{i=1}^{2g} (1 - \alpha_i t)$ with g genus of \overline{C} and $|\alpha_i| = \sqrt{q}$
- $P(t) = \sum_{i=0}^{2g} a_i t^i$ with $a_0 = 1$, $a_{2g} = q^g$ and $a_{g+i} = q^i a_{g-i}$
- $N_r = q^r + 1 - \sum_{i=1}^{2g} \alpha_i^r$ and $P(1)$ is the order of $\text{Jac}(\overline{C}/\mathbb{F}_q)$
Computational Approaches

- **l-adic** compute zeta function mod small primes $l \neq p$ + CRT.
 - Need explicit description of l-torsion of abelian variety
 - Practical for genus 1 and 2 curves (Schoof, Pila, A-H, …)

- **p-adic** compute zeta function mod high power of p
 - Canonical Lift / AGM:
 * Ordinary abelian varieties admitting lift of Frobenius
 * Compute action of Frobenius on invariant differential forms
 * Elliptic curves over \mathbb{F}_p^n: Satoh, Mestre, …
 * Hyperelliptic curves over \mathbb{F}_{2^n}: Mestre
 - p-adic Cohomology
Computational Approaches: Complexity

<table>
<thead>
<tr>
<th>Approach</th>
<th>p</th>
<th>n</th>
<th>genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>l-adic</td>
<td>polylog</td>
<td>polynomial</td>
<td>\geq exponential</td>
</tr>
<tr>
<td>p-adic canonical lift</td>
<td>polynomial</td>
<td>\geq quadratic</td>
<td>exponential</td>
</tr>
<tr>
<td>p-adic cohomology</td>
<td>linear</td>
<td>\geq cubic</td>
<td>polynomial</td>
</tr>
</tbody>
</table>
Unramified Extensions of p-adics

- K extension of \mathbb{Q}_p of degree n with valuation ring R and maximal ideal $M_R = \{ x \in K \mid |x|_p < 1 \}$ of R.

- K is called unramified iff its residue field $R/M_R \cong \mathbb{F}_q$.

- Let $\mathbb{F}_q \cong \mathbb{F}_p[t]/(\overline{Q}(t))$ then \mathbb{Q}_q can be constructed as

$$
\mathbb{Q}_q \cong \mathbb{Q}_p[t]/(Q(t)),
$$

with $Q(t)$ any monic lift of $\overline{Q}(t)$ to $\mathbb{Z}_p[t]$.

- $\text{Gal}(\mathbb{Q}_q/\mathbb{Q}_p)$ is cyclic with generator Frobenius substitution σ and σ modulo p equals p-th power Frobenius $\overline{\sigma}$ on \mathbb{F}_q.

- Since $q = p^n$ we have $F = \sigma^n$ and \overline{F} is q-th power Frobenius.
Computing Zeta Function - General Strategy

- \overline{X} smooth affine variety over \mathbb{F}_q of dimension d.

- Monsky and Washnitzer construct \mathbb{Q}_q-vectorspaces $H^i(\overline{X}/\mathbb{Q}_q)$ with an induced action of Frobenius F_* on it such that these cohomology groups satisfy a Lefschetz trace formula:

$$N_r = \sum_{i=0}^{d} (-1)^i \text{Tr} ((q^d F_*^{-1})^r| H^i(\overline{X}/\mathbb{Q}_q))$$

- For smooth affine curve \overline{C} the only non-trivial MW cohomology groups are $H^0(\overline{C}/\mathbb{Q}_q)$ and $H^1(\overline{C}/\mathbb{Q}_q)$, so

$$\#\overline{C}(\mathbb{F}_q^r) = q^r - \text{Trace} ((qF_*^{-1})^r| H^1(\overline{C}/\mathbb{Q}_q))$$
Algebraic de Rham Cohomology

- X smooth, affine variety over K of char 0 with coordinate ring

\[A := K[x_1, \ldots, x_n]/(f_1, \ldots, f_m) \]

- Module of Kähler differentials $\Omega^1_{A/K}$ generated by dg with $g \in A$

\[\Omega^1_{A/K} = (A \, dx_1 + \cdots + A \, dx_n)/(\sum_{i=1}^{m} A(\frac{\partial f_i}{\partial x_1} \, dx_1 + \cdots + \frac{\partial f_i}{\partial x_n} \, dx_n)) \] .

- $\Omega^i_{A/K} = \wedge^i \Omega^1_{A/K}$ and $d_i : \Omega^i_{A/K} \to \Omega^{i+1}_{A/K}$ exterior diff.

- Since $d_{i+1} \circ d_i = 0$ we get the de Rham complex $\Omega_{A/K}$

\[0 \longrightarrow A \xrightarrow{d_0} \Omega^1_{A/K} \xrightarrow{d_1} \Omega^2_{A/K} \xrightarrow{d_2} \Omega^3_{A/K} \cdots \]
• i-th de Rham cohomology group of is defined as

$$H_{DR}^i(A/K) := \text{Ker } d_i / \text{Im } d_{i-1}$$
M-W Cohomology of Affine Line

- Consider $C : xy - 1 = 0$ with coordinate ring $\bar{A} = \mathbb{F}_p[x, 1/x]$, then
 $$N_r = \#C(\mathbb{F}_p^r) = p^r - 1$$

- Construct de Rham cohomology in characteristic p?
 - $\Omega^1(\bar{A}) := \bar{A} \, dx/(d \bar{A})$ is infinite dimensional.
 - $x^k \, dx$ with $k \equiv -1 \pmod{p}$ cannot be integrated.

- First attempt: lift situation to \mathbb{Z}_p and try again?
 - Consider two lifts to \mathbb{Z}_p
 $$A_1 = \mathbb{Z}_p[x, 1/x] \quad \text{and} \quad A_2 = \mathbb{Z}_p[x, 1/(x(1 + px))]$$
 - A_1 and A_2 are not isomorphic; $1 + px$ not invertible in A_1.
 - $H^1_{DR}(A_1/\mathbb{Q}_p) = \langle \frac{dx}{x} \rangle$ and $H^1_{DR}(A_2/\mathbb{Q}_p) = \langle \frac{dx}{x}, \frac{dx}{1+px} \rangle$.
M-W COHOMOLOGY OF AFFINE LINE

- Second attempt: use p-adic completion, then

$$A_1^\infty \cong A_2^\infty \cong \left\{ \sum_{i \in \mathbb{Z}} \alpha_i x^i \in \mathbb{Z}_p[[x, 1/x]] \mid \lim_{i \to \infty} \alpha_i = 0 \right\}$$

- However: $H^{1}_{DR}(A^\infty / \mathbb{Q}_p)$ is again infinite dimensional!

 $- \sum_i p^i x^{p^i - 1}$ is in A^∞ but integral $\sum_i x^{p^i}$ is not.

- Third attempt: consider the dagger ring or weak completion

$$A^\dagger = \left\{ \sum_{i \in \mathbb{Z}} \alpha_i x^i \in \mathbb{Z}_p[[x, 1/x]] \mid \exists \epsilon \in \mathbb{R}_{>0}, \delta \in \mathbb{R} : v_p(\alpha_i) \geq \epsilon |i| + \delta \right\}$$

- Note: A_1^\dagger is isomorphic to A_2^\dagger, since $1 + px$ invertible in A_1^\dagger.
M-W Cohomology of Affine Line

• Monsky-Washnitzer cohomology = de Rham cohomology of $A^\dagger \otimes \mathbb{Q}_p$

• $H^1(\overline{A}/\mathbb{Q}_p) = A^\dagger dx/(dA^\dagger)$ and clearly for $k \neq -1$

$$x^k dx = d\left(\frac{x^{k+1}}{k+1}\right)$$

• Conclusion: $H^1(\overline{A}/\mathbb{Q}_p)$ has basis $\frac{dx}{x}$

• Lifting Frobenius F to A^\dagger: infinitely many possibilities

$$F(x) \in x^p + pA^\dagger$$

• Examples: $F_1(x) = x^p$ or $F_2(x) = x^p + p$
M-W COHOMOLOGY OF AFFINE LINE

- Action of F_1 on basis $\frac{dx}{x}$ is given by

$$F_1^* \left(\frac{dx}{x} \right) = \frac{d(F_1(x))}{F_1(x)} = \frac{d(x^p)}{x^p} = \frac{dx}{x}$$

- Action of F_2 on basis $\frac{dx}{x}$ is given by

$$F_2^* \left(\frac{dx}{x} \right) = \frac{d(F_2(x))}{F_2(x)} = \frac{d(x^p + p)}{x^p + p} = \frac{px^{p-1}}{x^p + p} dx = \frac{p}{1 + px^{-p}} \frac{dx}{x}$$

- Power series expansion: $(1 + px^{-p})^{-1} = \sum_{i=0}^{\infty} (-1)^i p^i x^{-ip} \in A^\dagger$

$$F_2^* \left(\frac{dx}{x} \right) = p \frac{dx}{x} + d \left(\sum_{i=1}^{\infty} \frac{(-1)^{i+1} p^{i-1}}{i} x^{-ip} \right)$$
M-W Cohomology of Affine Line

- Action of F_1 and F_2 are equal on $H^1(\overline{A}/\mathbb{Q}_p)$!

\[F_*(\frac{dx}{x}) = p\frac{dx}{x} \Rightarrow F_*^{-1}\left(\frac{dx}{x}\right) = \frac{1}{p}\frac{dx}{x} \]

- Lefschetz Trace formula applied to \overline{C} gives

\[\#\overline{C}(\mathbb{F}_{p^r}) = p^r - \text{Trace} \left((pF_*^{-1})^r | H^1(\overline{C}/\mathbb{Q}_p) \right) \]

- Conclusion:

\[\#\overline{C}(\mathbb{F}_{p^r}) = p^r - 1 \]
Monsky-Washnitzer cohomology

- \overline{X} smooth affine variety over \mathbb{F}_q with coordinate ring \overline{A}.
- Exists $A := \mathbb{Z}_q[x_1, \ldots, x_n]/(f_1, \ldots, f_m)$ with $A \otimes_{\mathbb{Z}_q} \mathbb{F}_q \cong \overline{A}$
- Dagger ring or weak completion A^\dagger is defined
 \[A^\dagger := \mathbb{Z}_q\langle x_1, \ldots, x_n \rangle^\dagger/(f_1, \ldots, f_m) \]
 with $\mathbb{Z}_q\langle x_1, \ldots, x_n \rangle^\dagger$ overconvergent power series
 \[\left\{ \sum_I a_I x^I \in \mathbb{Z}_q[[x_1, \ldots, x_n]] \mid \liminf_{|I| \to \infty} \frac{v_p(\alpha I)}{|I|} > 0 \right\} \]
- M-W cohomology is the de Rham cohomology of $A^\dagger \otimes \mathbb{Q}_q$.

15
Monsky-Washnitzer cohomology

- Definition only depends on \overline{A} and not on choices made!
- Every morphism $\overline{G} : \overline{A} \to \overline{B}$ lifts to $G : A^{\dagger} \to B^{\dagger}$.
- Induced map on $H^i(\overline{A}/\mathbb{Q}_q) \to H^i(\overline{B}/\mathbb{Q}_q)$ only depends on \overline{G}.
- Cohomology groups $H^i(\overline{A}/\mathbb{Q}_q)$ are finite dimensional.
- Let \overline{C} be a projective, smooth curve of genus g over \mathbb{F}_q.
 - S a set of $m \mathbb{F}_q$-points and \overline{A} coordinate ring of $\overline{C} \setminus S$

 \[
 \dim H^1(\overline{A}/\mathbb{Q}_q) = 2g + m - 1
 \]
\(C_{a,b} \) CURVES

- \(C_{a,b} \) curve \(\overline{C} \) over finite field \(\mathbb{F}_q \),

\[
\overline{C} : y^a + \sum_{i=1}^{a-1} \overline{f}_i(x)y^i + \overline{f}_0(x) = 0
\]

where \(\deg \overline{f}_0(x) = b \), \(a \deg \overline{f}_i(x) + bi \leq ab \) and \(\gcd(a, b) = 1 \).

- Absolutely irreducible and genus is \(g = \frac{(a-1)(b-1)}{2} \).

- Unique degree 1 place \(Q \) at infinity and \(v_Q(x) = -a \), \(v_Q(y) = -b \).

- Various subclasses of \(C_{a,b} \) curves:
 - Hyperelliptic curves: \(a = 2 \) and \(b = 2g + 1 \)
 - Superelliptic curves: \(\overline{f}_i(x) = 0 \) for \(i = 1, \ldots, a - 1 \)
\(C_{a,b} \text{ curves - Lift of Curve}\)

- The affine curve \(\overline{C}\) has coordinate ring \(\overline{A} := \mathbb{F}_q[x, y]/(\overline{C})\).

- Take arbitrary lifts \(f_i(x) \in \mathbb{Z}_q[x]\) of \(\overline{f}_i(x)\) for \(i = 0, \ldots, a-1\) with \(\deg f_i(x) = \deg \overline{f}_i(x)\) and define

\[
C : y^a + \sum_{i=1}^{a-1} f_i(x)y^i + f_0(x) = 0
\]

- Let \(A^\dagger\) be the dagger ring of \(A := \mathbb{Z}_q[x, y]/(C)\).

- Elements of \(A^\dagger\) can be represented as \(\sum_{l=0}^{a-1} \sum_{k=0}^{+\infty} a_{k,l}x^ky^l\) and the valuation of \(a_{k,l}\) grows linearly with \(k\).
$C_{a,b}$ curves - Frobenius on A^\dagger

- The necessary conditions on the Frobenius σ on A^\dagger are

\[x^\sigma \equiv x^p \mod p \quad \text{and} \quad y^\sigma \equiv y^p \mod p \quad \text{and} \quad C^\sigma(x^\sigma, y^\sigma) = 0 \]

- Fixing $x^\sigma = x^p$ also fixes y^σ as the solution of $C^\sigma(x^p, y^\sigma) = 0$, which implies that \(\left(\frac{\partial C(x, y)}{\partial y} \right)^p \) has to be invertible in A^\dagger.

- **Main idea**: lift Frobenius on x and y simultaneously such that denominator in the Newton iteration is invertible in A^\dagger.

- Let $Z \in A^\dagger$ such that $x^\sigma = x^p + \alpha Z$ and $y^\sigma = y^p + \beta Z$, then

\[C^\sigma(x^\sigma, y^\sigma) = C^\sigma(x^p + \alpha Z, y^p + \beta Z) = 0 \quad \text{and} \quad Z \equiv 0 \mod p \]
\(C_{a,b} \) curves - Frobenius on \(A^\dagger \)

- Let \(G(Z) := C^\sigma(x^p + \alpha Z, y^p + \beta Z) \), then \(Z_{k+1} = Z_k - \frac{G(Z_k)}{G'(Z_k)} \) with

\[
G'(Z) \equiv \alpha \frac{\partial C^\sigma}{\partial x} \bigg|_{(x^p, y^p)} + \beta \frac{\partial C^\sigma}{\partial y} \bigg|_{(x^p, y^p)} + O(Z) \mod p
\]

- \(G'(Z) \) will be invertible in \(A^\dagger \) if \(G'(Z) \equiv 1 \mod p \) and thus

\[
G'(Z) \equiv \alpha \left(\frac{\partial C}{\partial x} \right)^p + \beta \left(\frac{\partial C}{\partial y} \right)^p \equiv 1 \mod p
\]

- Assume \(\overline{C} \) non-singular, then \(\frac{\partial \overline{C}}{\partial x}, \frac{\partial \overline{C}}{\partial y} \) and \(\overline{C} \) generate unit ideal and using Buchberger’s algorithm we compute \(\overline{\alpha}, \overline{\beta}, \overline{\gamma} \in \overline{A} \) with

\[
1 = \overline{\alpha} \left(\frac{\partial \overline{C}}{\partial x} \right)^p + \overline{\beta} \left(\frac{\partial \overline{C}}{\partial y} \right)^p + \overline{\gamma \overline{C}}
\]
$C_{a,b}$ CURVES - BASIS OF $H^1(\overline{A}/\mathbb{Q}_q)$

• If \overline{C} is smooth, then $2g = (a - 1)(b - 1)$ and a basis for $H^1(\overline{A}/\mathbb{Q}_q)$

\[
x^k y^l \, dx \quad \text{for} \quad k = 0, \ldots, b - 2 \text{ and } l = 1, \ldots, a - 1
\]

• Using equation of the curve: $x^i y^l \, dx$ or $x^i y^l \, dy$ for $0 \leq l < a$

• Clearly $d(x^i y^{l+1}) \equiv 0$ and thus $x^i y^l \, dy \equiv -\frac{1}{l+1} x^{i-1} y^l \, dx$

• Differentiating the curve C leads to the equality

\[
\left(\sum_{i=1}^{a-1} f'_i(x) y^i + f'_0(x)\right) \, dx = -(ay^{a-1} + \sum_{i=1}^{a-1} f_i(x) iy^{i-1}) \, dy
\]
\section*{C_{a,b} curves - Reduction Formula}

- To reduce \(x^i y^l \, dx \) we multiply this equation with \(x^j y^l \)

\[
x^j \left(\sum_{i=1}^{a-1} f_i'(x) y^i + f_0'(x) \right) y^l \, dx = -x^j \left(a y^{a-1} + \sum_{i=1}^{a-1} f_i(x) i y^{i-1} \right) y^l \, dy
\]

(\ast)

- Partially integrating the right-hand side to \(y \) gives

\[
d \left(x^j \left(\frac{a}{a+l} y^{a+l} + \sum_{i=1}^{a-1} \frac{i}{i+l} f_i(x) y^{i+l} \right) \right) \equiv 0
\]

- This gives an expression for the right-hand side of (\ast) and thus

\[
x^j \left(\sum_{i=1}^{a-1} \frac{l}{i+l} f_i'(x) y^i + f_0'(x) \right) y^l \, dx \equiv j x^{j-1} \left(\frac{a}{a+l} y^{a} + \sum_{i=1}^{a-1} \frac{i}{i+l} f_i(x) y^i \right) y^l \, dx
\]
The action of σ_* on a differential form $x^k y^l dx$ is given by

$$\sigma_*(x^k y^l dx) \equiv (x^\sigma)^k (y^\sigma)^l \, dx^\sigma.$$

Substituting power series for x^σ and y^σ, we can write $\sigma_*(x^k y^l dx)$ on basis of $H^1(\overline{A}/\mathbb{Q}_q)$ using the reduction formulae.

This gives matrix M which is an approximation of the action of σ_* on $H^1(\overline{A}/\mathbb{Q}_q)$.

The polynomial $\chi(t) := t^{2g} P(1/t)$ can then be approximated by the characteristic polynomial of $MM^\sigma \cdots M^\sigma^{n-1}$.

Complexity: $O(g^{5+\varepsilon} n^{3+\varepsilon})$ time and $O(g^3 n^3)$ space.
Experimental Results

Genus 2 curves over \mathbb{F}_{2^n}

<table>
<thead>
<tr>
<th>n</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>18.1</td>
</tr>
<tr>
<td>72</td>
<td>36.5</td>
</tr>
<tr>
<td>84</td>
<td>52.8</td>
</tr>
<tr>
<td>96</td>
<td>88.8</td>
</tr>
<tr>
<td>120</td>
<td>238</td>
</tr>
<tr>
<td>144</td>
<td>437</td>
</tr>
<tr>
<td>168</td>
<td>757</td>
</tr>
<tr>
<td>192</td>
<td>1229</td>
</tr>
<tr>
<td>240</td>
<td>3760</td>
</tr>
</tbody>
</table>

Genus g hyp. curves over \mathbb{F}_2

<table>
<thead>
<tr>
<th>Genus</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>13.3</td>
</tr>
<tr>
<td>40</td>
<td>116</td>
</tr>
<tr>
<td>60</td>
<td>458</td>
</tr>
<tr>
<td>80</td>
<td>897</td>
</tr>
<tr>
<td>100</td>
<td>2118</td>
</tr>
<tr>
<td>120</td>
<td>4593</td>
</tr>
<tr>
<td>160</td>
<td>11759</td>
</tr>
<tr>
<td>200</td>
<td>33531</td>
</tr>
<tr>
<td>240</td>
<td>39120</td>
</tr>
</tbody>
</table>
Experimental Results

<table>
<thead>
<tr>
<th>gn</th>
<th>$C_{3,4}$ curves</th>
<th>$C_{3,5}$ curves</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>1360</td>
<td>2440</td>
</tr>
<tr>
<td>144</td>
<td>4073</td>
<td>4926</td>
</tr>
<tr>
<td>168</td>
<td>4978</td>
<td>7094</td>
</tr>
<tr>
<td>192</td>
<td>7297</td>
<td>12093</td>
</tr>
<tr>
<td>240</td>
<td>15909</td>
<td>27078</td>
</tr>
<tr>
<td>288</td>
<td>30044</td>
<td>44786</td>
</tr>
</tbody>
</table>
Conclusions & Open Problems

• Now possible to compute the zeta function of hyperelliptic curves and \(C_{a,b} \) curves over finite fields of any small characteristic.

• Complexity: \(O(g^{5+\varepsilon}n^{3+\varepsilon}) \) operations and \(O(g^3n^3) \) space.

• Lifting works for arbitrary non-singular affine curves, but how easy is it to write down explicit basis and reduction formulae?
 – WIP: Riemann-Roch theorem to construct differentials.

• Need new ideas for practical algorithms to deal with large \(p \)!