
Energy Efficient Hardware Implementations
of CAESAR Submissions

Michael Fivez

Thesis voorgedragen tot het behalen
van de graad van Master of Science

in de ingenieurswetenschappen:
elektrotechniek, optie Ingebedde

systemen en multimedia

Promotoren:
Prof. dr. ir. Ingrid Verbauwhede

Prof. dr. ir. Vincent Rijmen

Assessoren:
Prof. dr. ir. R. Lauwereins

dr. B. Bilgin

Begeleiders:
ir. P. Maene

ir. B. Yang

Academiejaar 2015 – 2016

c© Copyright KU Leuven

Without written permission of the thesis supervisors and the author it is forbidden
to reproduce or adapt in any form or by any means any part of this publication.
Requests for obtaining the right to reproduce or utilize parts of this publication should
be addressed to ESAT, Kasteelpark Arenberg 10 postbus 2440, B-3001 Heverlee,
+32-16-321130 or by email info@esat.kuleuven.be.

A written permission of the thesis supervisors is also required to use the methods,
products, schematics and programs described in this work for industrial or commercial
use, and for submitting this publication in scientific contests.

Zonder voorafgaande schriftelijke toestemming van zowel de promotoren als de
auteur is overnemen, kopiëren, gebruiken of realiseren van deze uitgave of gedeel-
ten ervan verboden. Voor aanvragen tot of informatie i.v.m. het overnemen en/of
gebruik en/of realisatie van gedeelten uit deze publicatie, wend u tot ESAT, Kas-
teelpark Arenberg 10 postbus 2440, B-3001 Heverlee, +32-16-321130 of via e-mail
info@esat.kuleuven.be.

Voorafgaande schriftelijke toestemming van de promotoren is eveneens vereist voor het
aanwenden van de in deze masterproef beschreven (originele) methoden, producten,
schakelingen en programma’s voor industrieel of commercieel nut en voor de inzending
van deze publicatie ter deelname aan wetenschappelijke prijzen of wedstrijden.

Preface

The realization of this thesis would not have been possible without the support
and guidance of several individuals.

Firstly, I would like to thank my promotors, prof. Ingrid Verbauwhede and Prof.
Vincent Rijmen, for providing the interesting thesis topic and giving me the chance
to complete my thesis under their direction.

I would also like to thank my three daily advisers, dr. Begül Bilgin, ir. Pieter
Maene, and ir. Bohan Yang. The door to their office was always open, and I could
not have imagined any better supervisors. Their extensive feedback on the final
thesis paper was also much appreciated.

A special thanks also goes out to the last jury member, prof. Rudy Lauwereins.

Lastly I would like to thank my parents for supporting me throughout the five
years of my study, and for reading my thesis and providing me valuable feedback.

Writing this master thesis has been an enriching experience that I feel I will carry
with me in the future.

Michael Fivez

i

Contents

Preface i
Abstract iv
Samenvatting v
List of Figures vi
List of Tables viii
List of Abbreviations and Symbols x
1 Introduction 1

1.1 Competition for Authenticated Encryption: Security, Applicability,
and Robustness . 2

1.2 Authenticated Encryption . 2
1.3 Outline . 3

2 The Candidate Ciphers 5
2.1 Ciphers in the Competition . 5
2.2 Joltik . 7
2.3 Morus . 8
2.4 Ascon . 9
2.5 Conclusion . 9

3 Literature Review 11
3.1 High Level Design Methodology . 11
3.2 Hardware Implementations of Similar Cryptographic Ciphers 12
3.3 Low Level Energy Optimization’s . 14
3.4 Energy Estimation and Measurement 15
3.5 Conclusion . 16

4 The Implementation Approach 17
4.1 The General Approach . 17
4.2 The GMU Hardware API for Authenticated Ciphers 18
4.3 Approach for the Core . 19
4.4 Spartan 6 . 21
4.5 The Measuring Setup . 22
4.6 Conclusion . 26

5 The Implementation of Joltik 29

ii

Contents

5.1 The Structure of Joltik . 29
5.2 The Iterated Implementation . 32
5.3 The Serialized Implementations . 36
5.4 The Unrolled Implementations . 40
5.5 The Measurements Results . 40
5.6 Interpretation of the Results . 42
5.7 Conclusion . 44

6 The Implementation of Morus 45
6.1 The Structure of Morus . 45
6.2 The Iterated Implementation . 47
6.3 The Serialized Implementation . 51
6.4 The Unrolled Implementations . 52
6.5 The Measurements Results . 52
6.6 Interpretation of the Results . 53
6.7 Conclusion . 55

7 The Implementation of Ascon 57
7.1 The Structure of Ascon . 57
7.2 The Iterated Implementation . 59
7.3 The Serialized Implementations . 62
7.4 The Unrolled Implementations . 64
7.5 The Measurements Results . 65
7.6 Interpretation of the Results . 67
7.7 Conclusion . 68

8 Comparison of the Ciphers 71
8.1 The Performance of the Ciphers . 71
8.2 Global Optimizations on the Ciphers 74
8.3 Conclusion . 76

9 Conclusion 79
9.1 Empirical Findings . 79
9.2 Limitations . 81
9.3 Further Direction of Research . 82

A Measurement details for the Joltik implementations 85
B Measurement details for the Morus implementations 89
C Measurement details for the Ascon implementations 91
Bibliography 95

iii

Abstract

In this thesis, three lightweight cryptographic ciphers from The Competition for
Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) were
evaluated on Field-programmable gate array (FPGA), namely Joltik, Morus and
Ascon. The main focus of the evaluation was their energy consumption and area
requirement.

Several hardware implementations were made of each cipher. The round-based
structure of the three ciphers was used to create implementations that vary largely in
size. Their energy consumption was determined through live measurements. Together
with the area and maximum clock speed, obtained through synthesis, they could be
compared.

Because of the high variability of hardware implementations and their measure-
ments, special care was taken to ensure that the comparisons were accurate. By using
the same external Application programming interface (API), the implementations
were forced in to a similar structure. The core of the implementations was then
isolated for the measurements. Measures were taken to reduce any overhead on the
FPGA, as well as external influences like the temperature.

The comparisons yielded three main results. The general performance of each
cipher was quantified, and it was compared to the claims of their authors. The
trade-off between the area and energy consumption was determined for each cipher.
This trade-off is relevant in low-power, embedded applications. And as a third result,
the performance of the implementations was generalized to draw conclusions about
effective optimization strategies for different types of ciphers.

iv

Samenvatting

In deze thesis zijn drie lichtgewicht cryptografische algoritmes uit The Competition
for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR)
geëvalueerd op Field-programmable gate array (FPGA). Deze algoritmes zijn Joltik,
Morus en Ascon. De hoofdfocus van de evaluatie was hun energieverbruik en
hardware-grootte.

Meerdere implementaties zijn gemaakt van elk algoritme. Er is gebruik gemaakt
van hun ronde gebaseerde structuur om implementaties te maken van variërende
groottes. Hun energieverbruik was gemeten via directe metingen. Samen met hun
hardware-grootte en maximale kloksnelheid, beiden verkregen uit hun synthetisatie,
konden ze worden vergeleken.

Omwille van de grote variabiliteit van hardware implementaties en hun metingen,
is er intensief aandacht besteed aan de correctheid van de vergelijkingen. Door voor
alle algoritmes dezelfde externe application programming interface (API) te gebruiken,
kregen alle implementaties dezelfde structuur. De kern van de implementaties werd
dan geïsoleerd en gemeten. Maatregelen zijn genomen om de invloed van externe
factoren, zoals de temperatuur en externe communicatie, te elimineren.

De vergelijkingen leidden tot drie voorname conclusies. De algemene prestaties
van elk algoritme zijn gekwantificeerd, en vergeleken met de originele beweringen
van hun makers. Voor ieder algoritme is het compromis tussen de hardware-grootte
en het energieverbruik besproken. Dit compromis is van belang in lage-energie
toepassingen. En als derde resultaat zijn de prestaties van de implementaties
veralgemeend om effectieve optimalisatie strategieën te bekomen voor verschillende
types cryptografische algoritmes.

v

List of Figures

2.1 The type-3 Feistel scheme [1] . 6
2.2 A sponge construction [2] . 6

3.1 One round of the AES block cipher . 12
3.2 One round of the permutation used in the Ascon 13

4.1 The structure of the GMU Hardware API 18
4.2 The structure of the implementations of the CipherCore 20
4.3 The SAKURA-G board . 23
4.4 The Digilent Atlys board . 25
4.5 Evolution of the power consumption when running Joltik-128 for 10

minutes . 26

5.1 High level diagram of the nonce respecting mode of Joltik 30
5.2 The rounds of the block cipher Joltik-BC-192 31
5.3 Ordering of the 64-bit state of the block cipher Joltik-BC 31
5.4 The datapath of the CipherCore of the Joltik 33
5.5 The Finite State Machine of the CipherCore of the Joltik 34
5.6 The Datapath of the iterated implementations of the kernel of Joltik

(Joltik-BC-196) . 35
5.7 The Finite State Machine of the iterated implementations of the kernel

of Joltik (Joltik-BC-196) . 36
5.8 Parallelism in an encryption round of Joltik-BC 37
5.9 Parallelism in a round of Joltik-BC (capable of both encryption and

decryption) . 38
5.10 The Datapath of the serialized implementation of Joltik-BC-196 38
5.11 The structure of the serialized Joltik-BC implementation with

distributed ram . 39
5.12 The dynamic power consumption of the Joltik-BC-192 implementations 41
5.13 The energy consumption of the Joltik-BC implementations 42
5.14 The area and maximum throughput versus the energy consumption of

the Joltik-BC implementations . 43

6.1 High level diagram of Morus-640 . 46
6.2 The five rounds of the round update schedule used in Morus-640 46

vi

List of Figures

6.3 The Datapath of the CipherCore of Morus 48
6.4 The Finite State Machine of the CipherCore of Morus 48
6.5 The datapath of the iterated implementation of Morus 49
6.6 The FSM of the iterated implementation of Morus 50
6.7 The structure of a round of Morus-640 51
6.8 The dynamic power consumption and energy consumption of the Morus

implementations . 53
6.9 The area and maximum throughput versus the energy consumption of

the Morus implementations . 54
6.10 The throughput and energy consumption in function of the message

length for the Morus implementations 54

7.1 High level diagram of Ascon-128a . 58
7.2 One round of the permutation used in the Ascon cipher 59
7.3 The datapath of the CipherCore of Ascon 60
7.4 The Finite state machine of the CipherCore of Ascon 60
7.5 The datapath of the iterated implementation of Ascon 61
7.6 The Finite state machine of the iterated implementation of Ascon . . . 63
7.7 The structure of the serialized implementation of Ascon 64
7.8 The dynamic power consumption of the Ascon-128 implementations . . 65
7.9 The energy consumption of the Ascon implementations 66
7.10 The area and maximum throughput plotted vs the energy consumption

of the Ascon implementations . 67

8.1 Energy versus area comparison of the best implementations of Joltik,
Morus and Ascon . 72

8.2 Energy efficiency in function of the message length for the most efficient
implementations of Joltik, Morus and Ascon 72

8.3 The maximum throughput in function of the area for relevant
implementations of Joltik, Morus and Ascon 73

8.4 The relative change in critical path delay versus the relative change in
the energy consumption of the unrolled implementations 74

8.5 The relative area increase versus the unrolling factor of the unrolled
implementations . 75

vii

List of Tables

1.1 The inputs and output of authenticated ciphers participating in the
CAESAR competition . 3

2.1 The recommended parameter sizes for the nonce-respecting modes of Joltik 7
2.2 The recommended parameter sizes for Morus 8
2.3 The recommended parameter sizes for Ascon 9
2.4 Features of the ciphers Joltik, Morus and Ascon 10

4.1 A summary of all the implementations made in this thesis 21
4.2 Features of Spartan 6 SLX45 . 21
4.3 Types of slices in the Spartan 6 . 22
4.4 The resources used when SliceL and SliceM are put in special configurations 22

5.1 The sizes of the parameters for the analyzed versions of Joltik 30
5.2 Parameters for the two different versions of Joltik-BC 31
5.3 The LUTs and wiring used for the sub parts in the iterated

implementation of the Joltik kernel (Joltik-BC-196) 36
5.4 The number of LUTs and Registers used in certain Joltik-BC

implementations . 44
5.5 The measurement results for the best Joltik-BC implementations 44

6.1 The measurement results for the best Morus implementations 55

7.1 The sizes of the key, tweak, public number and block number for the
analyzed versions of Ascon . 58

7.2 All the unrolled implementations for Ascon-128a and Ascon-128 65
7.3 The measurement results for the best Ascon implementations 68

A.1 Measurement results for the Joltik-BC-192 implementations on a Digilent
ADEPT setup . 86

A.2 Measurement results for the Joltik-BC-128 implementations on a Digilent
ADEPT setup . 87

A.3 Synthesizing with wrapper on xc6slx45 csg324-3 for the Joltik-BC-192
implementations . 87

A.4 Synthesizing with wrapper on xc6slx45 csg324-3 for the Joltik-BC-128
implementations . 88

viii

List of Tables

A.5 The amount of clock cycles the operations take in the Joltik-BC-196
implementations . 88

A.6 The amount of clock cycles the operations take in the Joltik-BC-128
implementations . 88

B.1 Measurement results for the Morus-640 implementations on a Digilent
ADEPT setup . 90

B.2 Synthesizing with wrapper on xc6slx45 csg324-3 for the Morus-640
implementations . 90

B.3 The amount of clock cycles the operations take in the Morus-640
implementations . 90

C.1 Measurement results for the Ascon-128a implementations on a Digilent
ADEPT setup . 92

C.2 Measurement results for the Ascon-128 implementations on a Digilent
ADEPT setup . 93

C.3 Synthesizing with wrapper on xc6slx45 csg324-3 for the Ascon-128a
implementations . 93

C.4 Synthesizing with wrapper on xc6slx45 csg324-3 for the Ascon-128
implementations . 94

C.5 The amount of clock cycles the operations take in the Ascon-128a
implementations . 94

C.6 The amount of clock cycles the operations take in the Ascon-128
implementations . 94

ix

List of Abbreviations and
Symbols

Abbreviations
NSA National Security Agency
CAESAR Competition for Authenticated Encryption: Security, Applicability, and

Robustness
FPGA Field-programmable gate array
NIST National Institute of Standards and Technology
AES Advanced Encryption Standard
AE Authenticated Encryption
AD Associated Data
API Application programming interface
XPE Xilinx Power Estimator
ASIC Application-specific integrated circuit
S-box Substitution-box
LUT Look-Up Table
XPA Xilinx Power Analyzer
FSM Finite-state machine
CLB Configurable logic block
AC Alternating current
DC Direct current
MDS Maximum Distance Separable

x

Chapter 1

Introduction
The amount of personal data that is stored in digital form is increasing rapidly.
Together with high speed internet this enables hackers to steal millions of personal
files at once [3]. The importance of encryption is increasing and millions can be
gained by cracking encryption. Large organizations such as the National Security
Agency (NSA) invest billions for this purpose, so the smallest mistakes in security
implementations are capitalized upon [4].

At the same time, following Moore’s law, the density and speed of integrated
circuits have been increasing exponentially. This has allowed electronic devices
to get smaller and smarter and eventually become portable, making the energy
consumption of integrated circuits a design criteria. It is predicted that with the
Internet of Things [5, 6] energy efficiency will become an even more important design
factor in the future. Small and cheap chips, lasting years on a single small battery,
require every component to consume as little energy as possible.

These two evolutions demand new, more robust, and more efficient encryption
algorithms. This thesis explores the energy consumption of some possible candi-
dates. It does this through the Competition for Authenticated Encryption: Security,
Applicability, and Robustness (CAESAR). The ciphers in the competition are au-
thenticated ciphers. They ensure the user that the information comes from the right
person (authenticity), that only he can read it (confidentiality) and that it has not
been tampered with (integrity) [7]. Three ciphers from the competition which have
potential to be energy efficient in hardware are chosen and analyzed.

The aim of this thesis is twofold. First to see how the three chosen ciphers perform
energy-wise, to contribute to the evaluation of the chosen CAESAR candidates.
Multiple implementations of each cipher are made, with different areas and speeds, to
analyze the area-energy-speed trade-off. The second goal is to choose diverse enough
algorithms, so that relevant conclusions can be made about the energy consumption
and useful optimization strategies of different cipher families.

Field-programmable gate array (FPGA) implementations of the algorithms and
their versions are made in VHDL, and then optimized to be as energy efficient as
possible. All implementations follow a similar approach and have a common interface,
and focus on one FPGA in particular (Spartan 6). This is done to facilitate their
comparison.

1

1. Introduction

1.1 Competition for Authenticated Encryption:
Security, Applicability, and Robustness

In 1970 public developments made high quality cryptography accessible to the general
public. Governments tried to keep their monopoly on it, and until this day there
are still laws limiting the export of cryptography. For example, the UK government
recently called for banning secure messaging applications that do not build in backdoor
encryption for governement access [8].

However, around the year 2000, the United States relaxed their laws on the
export of cryptography [9]. At the time, the US National Institute of Standards and
Technology (NIST) announced an open competition to find "an unclassified, publicly
disclosed encryption algorithm capable of protecting sensitive government information
well into the next century" [10]. The winning algorithm of that competition (renamed
Advanced Encryption Standard or AES), is still one of the most used symmetric-key
algorithms today.

Several other competitions, based on the same open principles, were organized
in the new millennium. eSTREAM, organized from 2004 to 2008, resulted in a
portfolio of seven stream ciphers [11]. Later, the SHA-3 competition aimed to find
"a new hash algorithm to augment and revise" the SHA-1 and SHA-2 standards [12].
The competition was created because of fears that SHA-2 would be broken. Due to
successful attacks on MD5 and theoretical attacks on SHA-1 [13, 14], there was no
other backup algorithm. The competition went from 2007 to 2012.

The ongoing CAESAR competition follows in this tradition. The aim of the
competition is to find Authenticated Encryption (AE) ciphers that offer advantages
over the popular AES-GCM, and are suited for widespread adoption [15]. The
competition will identify a portfolio of authenticated ciphers, good for a wide rage
of applications. It will have a balance between security and performance (including
criteria like robustness against implementation errors).

56 submissions entered the competition. Each submission proposes a family of
authenticated ciphers, where the individual ciphers of the families can vary in external
or internal parameters, like key length or the number of rounds. The first round of
the competition, which went from March 2014 to July 2015, focused mostly on the
security of the ciphers. While the next rounds will also focus on the performance,
both in software and hardware. Software and hardware implementations of the
ciphers are required and compared which each other.

The competition is based on the principle of public evaluation. A committee
with members from several universities judge the ciphers [16], basing their decisions
on published analyses by independent researchers.

1.2 Authenticated Encryption

Authenticated ciphers are ciphers that provide both authentication, confidentiality
and integrity. This ensures the user that the information comes from the right person

2

1.3. Outline

Input Output
Associated data Associated data (unchanged)
Plaintext Ciphertext

(= encrypted plaintext
+ authentication tag)

Secret Key
Public nonce
Secret nonce

Table 1.1: The inputs and output of authenticated ciphers participating in the
CAESAR competition

(authenticity), that only he can read it (confidentiality) and that it has not been
tampered with (integrity)[7].

It has been found that separating the confidentiality and integrity mode (for
example with a block cipher and a hash function), easily leads to algorithms that
are not robust against implementation errors [17]. This called for the development
of good authenticated ciphers that combine both goals.

The ciphers participating in the CAESAR competition are required to accept
variable length Associated Data (AD) and plaintext, and convert these into a
ciphertext with the help of a fixed-length public nonce, secret nonce and key (the
use of a secret nonce is optional). Integrity is provided for the Associated Data,
and both integrity and confidentiality are provided for the plaintext [15]. This is
displayed in Table 1.1.

AD is a part of a message that should be authenticated, but doesn’t require
confidentiality. For example the payload of a packet should by authenticated and
encrypted (this is the plaintext), but the header should be only authenticated.
Integrity is important for both parts, so no attacker can fool the receiver in to
thinking that he is communicating with someone else.

The nonce is an extra number aside from the key that is used in the cipher. For
example it prevents that when the same message is encrypted twice with the same
key, the same ciphertext would be obtained. Often it can not be reused more than
once for the same key, without the cipher losing its security.

1.3 Outline

Chapter 1 contains the introduction of the thesis. The background of the thesis is
introduced. It defines the goals of the research of this thesis. It then lists the outline
of the thesis.

In Chapter 2 the ciphers in the CAESAR competition are presented. Three
ciphers from the competition are selected for analysis. After that, the three chosen
algorithms are presented in more depth.

3

1. Introduction

Chapter 3 contains the literature review. Design methodologies are researched.
Hardware implementations of other ciphers are analyzed, and some optimization
techniques are discussed. Finally, some methods to estimate and measure energy of
FPGA designs are found.

Chapter 4 lists the implementation approach. A general approach is established,
with a common external Application Programming Interface (API) for all the im-
plementations. A more specific structure is designed to facilitate the comparison
of the ciphers. Then the structure and features of the used FPGA, Spartan 6, are
listed. Finally, a concrete measuring method is described to measure the energy
consumption of the implementations.

Chapter 5 presents the implementations of the first cipher, Joltik. The per-
formance of the implementations is measured and the results are presented and
discussed.

Chapter 6 and 7 repeat the same process for the other two ciphers. Respectively
Morus and Ascon.

In Chapter 8 the measuring results of the different ciphers are compared. The
absolute performance and strengths and weaknesses of each cipher are identified.
The global optimization strategies between the implementations are discussed, and
conclusions about the benefits of certain strategies for certain types of ciphers are
made.

The final chapter contains the conclusion of the thesis. The research questions
are restated and the empirical findings in the thesis are summarized to give an answer
to those questions. The limitations of the research and possible further research are
discussed.

4

Chapter 2

The Candidate Ciphers

As stated in Chapter 1, this thesis aims to evaluate ciphers that, when implemented
on FPGA, can be used for low energy applications. The ciphers should also be
diverse, so that interesting conclusions can be made by comparing different cipher
families. To achieve these goals, the choice of ciphers is important.

In this chapter, the chosen ciphers and their selection are given and commented.
First, a short summary of the algorithms present in the competition is given, including
the motivation for their selection for analysis. After that each of the three chosen
ciphers are presented more in-depth with a short global overview of their features.
In the end a short summary of the ciphers side by side is given.

2.1 Ciphers in the Competition

Thirty candidate ciphers made it to the second round of the CAESAR competition.
Of these, 13 are block cipher-based, three stream cipher-based, eight are based
on sponge functions, two on permutations, one on a compression function (hash)
and three have their own dedicated scheme [18]. The vast majority of the block
cipher-based algorithms is either using AES or uses a primitive based on AES [18].
In this thesis, three algorithms are picked for analysis, one block cipher based, one
with a dedicated scheme that is partially based on a Type-3 Feistel scheme [19], and
one that is based on sponge-functions.

A block cipher is a cipher that takes a block of data and converts it in to
an encrypted block of data with the use of a secret key. If the same block of
data is encrypted with the same key, the result will also be the same. To achieve
confidentiality and authenticity of a message, extra operations need to be performed
apart from the block cipher. This is called a mode of operation [20].

A Type-3 Feistel scheme changes a block of data iteratively through a number of
rounds. The rounds have a structure as shown in Figure 2.1. F can be any function.
A classical sponge construction is displayed in Figure 2.2. Blocks of data are xor’ed
with an internal state, that is updated with a sponge function f.

No AES-based cipher is selected for analysis. Since AES is such a popular block
cipher, a great amount of research has been already done on it. It is more useful to

5

2. The Candidate Ciphers

analyze less studied schemes and ciphers from the competition.

B1 B2 B3 B4

B2 B3 B1B4’ ’

F1 F3F2

Figure 2.1: The type-3 Feistel scheme [1]

Figure 2.2: A sponge construction [2]

The first cipher chosen for analysis is Joltik [21], a block cipher based cipher.
It uses a block cipher that is based on the TWEAKEY framework [22]. It has an
AES-like round function, is hardware oriented with a low area footprint, and has
64-bit blocks with a key-size of 64, 80, 96 or 128 bit.

The second is Morus [23]. It uses its own dedicated function based on a Type-3
Feistel scheme to update its state, and is hardware oriented as well, using only shifts,
ands and xors. Its internal state is either 640 or 1280 bits, and it has 128-bit blocks,
with a key size of 128 or 256 bit.

The third and final cipher is Ascon [24], which is based on duplex sponge modes,
similar to MonkeyDuplex [25]. The internal permutations use simple operations, that
are easy and efficient to implement in hardware and software. These permutations
work on a sponge state size of 320 bit. It has 64- or 128-bit blocks and a key-size of
128 bits.

Not many studies have been done on the energy consumption of the candidates,
so the initial assumption of energy efficiency is based on the area footprint and the
algorithm’s complexity. The three algorithms have in common that they are fairly
lightweight and should be fast and efficient in hardware. They have at least one set
of parameters in common, so their performance can be compared easily. All three
took different approaches for the core of their algorithm, so potentially interesting
conclusions regarding energy usage of different cipher families can be made.

6

2.2. Joltik

2.2 Joltik

Joltik [21] is developed at the Nanyang Technological University in Singapore. It
is a lightweight authenticated encryption scheme oriented specifically at hardware
applications. It has a small area footprint and performs well for short messages,
because it has no initialization phase, using only n+1 block cipher calls for a n-block
message. Making it suitable for low-power applications that only have to send short
messages, like autonomous sensors.

Joltik is built around a tweakable block cipher called Joltik-BC, which is a
particular instantiation of the general TWEAKEY framework [22]. Joltik-BC is an
AES-based primitive, and can thus use and benefit from the extensive research on
AES. This block cipher is used in modes based on OCB3 (the nonce-respecting mode)
and COPA mode (the nonce-misuse resistant mode). The variants are quite similar.
The focus of the thesis will be on the nonce-respecting mode (this means that a
nonce can not be reused in different messages). It is more of interest for lightweight
hardware, because it is the most efficient mode (it uses less calls to the Joltik-BC
primitive), and the authors also recommend this mode [21]. A detailed illustration
of this mode and the block cipher can be found in Chapter 5, the implementation
chapter of Joltik.

This nonce-respecting mode has four different recommended parameter sizes
(Table 2.1). Where the first two use a smaller version of the tweakable block cipher
primitive (Joltik-BC-128), and the last two use a bigger version (Joltik-BC-192). The
64-64 (64-bit key and 64-bit block size), and 128-64 (128-bit key and 64-bit block
size) versions are analyzed in this thesis. The 64-64 version is one of the smallest
versions of the competition, and has the same key and block size as Ascon-128. The
128-64 version has the same key and block size as Ascon-128a and Morus-640-128
(section 2.4 and 2.3).

Name key-size block-size public message tag-size
number size

Joltik − 64 − 64 64 64 32 64
Joltik − 80 − 48 80 64 24 64
Joltik − 96 − 96 96 64 48 64
Joltik − 128 − 64 128 64 32 64

Table 2.1: The recommended parameter sizes for the nonce-respecting modes of
Joltik

The nonce-respecting mode offers full block security, beyond the birthday bound.
So the 64-bit block size still offers 64-bit authenticity and integrity. It offers confi-
dentiality up to the key size, more specifically 64-bit of confidentiality in the first
version that will be analyzed, and 128-bit in the second version. This is the same
security that AES-GCM offers. Joltik benefits from the research on AES and OCB3
to back up these claims.

7

2. The Candidate Ciphers

To summarize, good features of Joltik are the high security relative to the
parameters (integrity up to the block size and confidentiality up to the key size).
The efficiency for small message, It is lightweight in hardware and software. Because
it is based on AES for the block primitive and OCB3 for the nonce respecting mode,
it can benefit from the extensive analyses and literature on these modes.

2.3 Morus

Morus [23] is also developed at the Nanyang Technological University in Singapore.
It is designed to be fast in hardware by having a very short critical path, and is also
very efficient in software. Due to its big state it has a relatively big area footprint.
A long initialization and finalization phase makes it less efficient for short messages.

Morus uses a scheme similar to a type 3 Feistel scheme to update its state [18].
It has a multi-block state and updates using a number of rounds of a round function,
generating a random keystream that is then XORed to the message to produce the
ciphertext. It injects the message blocks into the state during the round function, to
provide authentication as well. A detailed illustration of this structure can be found
in Chapter 6, the implementation chapter of Morus.

Morus has three recommended parameter sizes. These are shown in Table 2.2.
The first has a smaller state (640-bits) than the other two versions (1280-bit). The
smallest version, with a 640-bit state, and 128-bit blocks, will be discussed in this
thesis. The key size and block size of 128-bits is the same as in Joltik-128-64 and
Ascon-128a (section 2.2 and 2.4).

Name key-size block-size public message tag-size
number size

Morus − 640 − 128 128 128 128 128
Morus − 1028 − 128 128 256 128 128
Morus − 1028 − 256 256 256 128 128

Table 2.2: The recommended parameter sizes for Morus

This version offers 128-bit integrity, authenticity and confidentiality. Double the
authentication security of the popular AES-GCM. These assumptions hold as long
as the nonce is not reused.

To summarize, good features of Morus are its short critical path and easy
operations in hardware. As well as its high authentication security (128-bits). It
performs really good in software as well, but that is not in the scope of this thesis.
A disadvantage is that Morus is not so efficient for short messages, having to run 16
times for the initialization and 8 times for the finalization.

8

2.4. Ascon

2.4 Ascon
Ascon [24] is developed at the University of Technology in Graz, Austria. Its main
goal is to facilitate easy implementation of side-channel resistance features, and to
have a moderate size in hardware combined with a moderate speed. Placing it in
the middle between Joltik and Morus, concerning speed and area. It has a short
initialization and finalization stage.

Ascon is based on duplex sponge modes, similar to MonkeyDuplex [25]. But has
a stronger initialization and key phase, which have more rounds compared to the
data processing phase. Data is xored to a part of the internal state and this state
then goes through a number of rounds, after which new data is added to the state.
The ciphertext is also generated during this operation. A detailed illustration of this
structure can be found in Chapter 7, the implementation chapter of Ascon.

There are two recommended parameters for Ascon, with the block size as the
difference between the two (Table 2.3). Both versions have the same internal state of
320 bits, and they are also both analyzed in this thesis. Ascon-128 has a similar block
and key size as Joltik-64-64, and Ascon-128a as Joltik-128-64 and Morus-640-128
(section 2.2 and 2.3).

Name key-size block-size public message tag-size
number size

Ascon − 128 128 64 128 128
Ascon − 128a 128 128 128 128

Table 2.3: The recommended parameter sizes for Ascon

Both versions offer 128-bit confidentiality, integrity and authenticity. Similar to
the Morus cipher. This only holds if the nonce is not reused.

To summarize, good features of Ascon are that it is lightweight in hardware
and software, while still being reasonably fast. The same circuit that is used for
encryption can be fully reused for decryption. The initialization and finalization
stages are quite short, so it is still reasonably efficient for short messages.

2.5 Conclusion
The three ciphers that will be analyzed in the thesis were discussed in this chapter.
They are all lightweight in hardware and have some parameters like key size and
block size in common. Their internal structure are vastly different from each other,
and their security goals also differ on some points. An overview is given in Table 2.4.

Their similar external parameters, but different internal structures, should make
it possible to draw interesting conclusions when comparing their implementations.

9

2. The Candidate Ciphers

Cipher Cipher family Area Speed Message Security
Overhead

Joltik Blockcipher smallest slow smallest 64-bit
(128-bit

confidentiality
for Joltik-128-64)

Morus Dedicated biggest fastest biggest 128-bit
(based on type-3 Feistel)

Ascon Duplex Sponge Modes small fast moderate 128-bit

Table 2.4: Features of the ciphers Joltik, Morus and Ascon

10

Chapter 3

Literature Review

This chapter contains the literature review of energy efficient FPGA designs. Both
the implementation and the measurement of such designs are discussed. This research
will serve as a basis for the implementations of the three ciphers described in the
previous chapter.

Section 1 contains a summary of some general techniques used in the develop-
ment of energy efficient FPGA implementations. It identifies some methods that
are relevant for this thesis. Section 2 studies FPGA implementations of similar
cryptographic ciphers as those of the thesis. These implementations are mainly
low-area implementations, since not much research has been done on energy-efficient
implementations of cryptographic ciphers on FPGA. Section 3 focuses on low level
optimizations and coding practices that can be used to create energy efficient designs.
Section 4 researches methods to estimate and measure the energy of FPGA designs.

3.1 High Level Design Methodology

A difficulty in energy efficient FPGA design, is that the design space is really
big [26]. Many different algorithms and architectures can be used to achieve the
same functionality. FPGAs offer countless trade-offs and features, like the degree of
parallelism, choice of memory, built-in blocks,... [27].

Research in [28] has shown that these high-level decisions have a big impact on
the final energy use. The impact of optimization on algorithmic, register and circuit
level are found to be respectively 20:2.5:1. Unfortunately these optimizations on
algorithmic level are also the hardest, because a lot of time investment is needed to
create or model the design in one alternative domain. Furthermore there are a lot of
domains to compare. Still, because of the big impact of high level optimizations, a
lot of methodologies for energy efficient FPGA design focus on these decisions.

One method is to first select all the domains with potential to be the most
efficient design. Then a high-level model of these domains can be created, which
can be modeled and its power usage can be estimated. With this information, the
designer can then determine in which domains to focus his design and optimization
efforts [26].

11

3. Literature Review

Another alternative is to identify the important parts of the design and determine
a function that estimates their power usage in several different configurations. The full
design can then be simulated by linking all these parts (called ’malleable algorithms’
by the authors of [29]) together. This can be simulated, and the settings of each
malleable algorithm can be tweaked, until the best global result is reached.

The most power intensive part of the designs in this thesis is the ’core’ of
the ciphers. For example, in the Joltik cipher this would be the block cipher
’Joltik-BC’. This core is not very big in complexity, which keeps the design space
manageable. The viable versions of this core can be identified by studying energy
efficient implementations of similar cryptographic algorithms. And since the number
of alternatives remains managable, all these versions can be modeled or implemented
in high detail. Which means their energy usage can be estimated using low-level
tools like the Xilinx power Estimator (XPE) [30] or by direct measurements.

3.2 Hardware Implementations of Similar
Cryptographic Ciphers

To have a basis for the implementations of the ciphers, implementations of similar
ciphers can be studied. There has not been much research on energy efficient
implementations of ciphers, especially for FPGA. Because of this, most of the focus
of the reviewed implementations was on area. Some implementations of AES and
Ascon are discussed in this section.

3.2.1 The AES Block Cipher

Statein

Round Key

Subbytes ShiftRows MixColumns Stateout

Figure 3.1: One round of the AES block cipher

AES [31] was announced in the year 2001, and is one of the most popular
symmetric-key algorithm used today. It is very similar to the Joltik-BC block cipher
used in Joltik [21]. A lot of research has been done on AES, so it is beneficial to look
at some different FPGA implementations of it, to base the Joltik-BC design on.

The AES block cipher consists of rounds that are repeated 10, 12 or 14 times,
depending on the version. Like most block ciphers with rounds, there are four
popular approaches to implement it on FPGA or Application-specific integrated
circuit (ASIC): iterated, pipelined, serialized and loop-unrolled architectures. In
an iterated architecture the logic of a full round is implemented, and the processed
block is cycled trough repeatedly. In the pipelined architecture there is logic of
multiple rounds on the chip, with registers in between them, so multiple blocks can

12

3.2. Hardware Implementations of Similar Cryptographic Ciphers

be processed at once. In the unrolled architecture, the logic of two or more rounds
is executed in one clock cycle [32]. In the serialized architecture only a part of the
round logic is placed on the chip, and a round is executed in multiple cycles by
reusing it.

There is some parallelism in an AES-round, and it is possible to serialize a round
of AES. A round can be relatively easily split in four, which mean one fourth of
a round is implemented on chip and reused four times to execute a round. Some
extra overhead is necessary to store some intermediary values, and to select the
correct part of the state each round. To reduce the area even further, the FPGA
logic elements (slices), can be configured as ram and used to store the state and the
intermediary values. A big reduction in area is achieved this way [33].

The suboperations of a round of AES and those of a round of Joltik-BC are
similar. Except for the keyschedule, the suboperations of an AES-round (displayed
in Figure 3.1), are essentially bigger versions of those of a Joltik-BC round (which
are described section 5.1.2). So there is benefit in looking at the implementations of
these parts in AES ciphers. The Substitution-box (S-box) and the keyschedule are
the most important parts that influence the design size [34]. On FPGA the S-box is
often implemented in Lookup tables (LUT) [35]. And since the S-box of Joltik is a
factor 8 smaller (4-bit inputs and outputs instead of the 8-bit in AES), this strategy
is even more suitable for Joltik.

The subkeys of AES can be generated on the fly, or precomputed and, e.g. stored
in the block ram of the FPGA. If the area is limited, it is generally better to compute
the subkeys on the fly while the rounds are being executed [36]. The keyschedules
of AES and Joltik-BC are different, but the same choice between precomputation
or generation on the fly is available there. However since a big part of the key of
Joltik-BC changes each block (the tweak part), only a limited part would be able to
be precomputed.

3.2.2 The Ascon Cipher

Statein

Round Constant

Substitution
Layer

Linear
Diffusion

Layer
Stateout

Figure 3.2: One round of the permutation used in the Ascon

Ascon is one of the three algorithms analyzed in this thesis (it is introduced in
Section 2.4). Just like Joltik and Morus, the main part of the cipher is round-based
(an Ascon round is displayed in Figure 3.2). And the hardware implementations
make use of this round-based structure [37].

13

3. Literature Review

Just as in AES, an iterated and several unrolled implementations can be made
(in [37] implementations with 1, 2, 3 and 6 rounds unrolled are made). The rounds
are implemented in a straightforward way (first an addition of the round constant,
followed by the S-boxes and the linear diffusion layer). The unrolled implementations
are bigger in area, consume more power, but use slightly less energy per encryption.
However the implementations were made for ASIC, so similar positive results on
FPGA are not guaranteed.

The biggest parts of an Ascon round are the S-boxes and the linear diffusion layer.
This second part can only be computed when the first part is done, so if a round
is serialized, the S-boxes and the linear diffusion layer will have to be calculated in
separate stages. These two parts can then be serialized to almost any degree with
minimal overhead. In the most extreme case only one S-box is present, and the linear
diffusion layer is calculated just one bit at a time. In this uncompromising low area
implementation, one round takes 512 clock cycles, and the area is 35% of the area of
the iterated implementation [37]. A compromise where, for example, 16 S-boxes are
used, so 80 bits are calculated every clock cycle, is possible.

3.3 Low Level Energy Optimization’s

After viable implementation versions of the ciphers are found, low-level optimizations
can be applied on them. There have been some previous studies about these
optimizations on FPGA, and some guidelines for energy efficient designs have been
published. These will be discussed in this section.

The power consumption of an FPGA consists of two main parts: static and
dynamic power consumption. The static power is mainly due to gate leakage and
the complicated wiring in an FPGA [38]. This is not something the designer can
influence, and it will not vary much between designs [39]. The dynamic power
consumption is due to the switching activity, and the change of status of the wires.
It can be improved with good design.

There are some general techniques that can be used to reduce the dynamic power
consumption. One is to make use of the embedded blocks as much as possible, since
they are optimized at the gate level instead of using less efficient LUTs. And a second
technique is clock gating, to stop switching activity in certain parts of the design
when it is not used. This last technique is not of much use in smaller designs [39].

Glitches also cause larger power consumptions. Glitches are unwanted switching
activities that happen before a signal settles down to its correct value. They can
be reduced by avoiding too long logic paths, for example by pipelining such paths.
Rearranging the logic, can also help in some cases [39].

In [40], the authors try to find the link between the elements of the FPGA that are
used in the design and the dynamic power consumption. They found that the power
consumption depends linearly on the number of LUTs used if their switching activity
is the same. Their measurements also confirmed that using embedded dedicated
blocks is highly beneficial to reduce the power. Finally they found that the power

14

3.4. Energy Estimation and Measurement

also depends on the board. In their measurements, even identical models sometimes
had a 10% different power consumption.

To have a better view of what parts of the FPGA will be used based on the
written HDL code, it is beneficial to understand how an FPGA is built [41]. In
Section 4.4, an overview of the structure of an Spartan 6, the FPGA on which the
designs made in this thesis are analyzed, is described.

The tool used to synthethize and implement the design also has an effect on the
power consumption. In [42], the effect of the optimization settings in Xilinx ISE
on the power consumption of several cryptographic algorithms is measured. These
settings include the optimization goal (either speed or area), the power reduction
setting, and the optimization efforts. The best average improvement is around 10%,
and AES achieves an improvement of 17% under the best settings.

3.4 Energy Estimation and Measurement

As mentioned in Section 3.1, the focus of the measurements and optimizations will
be on a small part of the design, so low level estimation and measurement tools
can be used. The energy can be estimated on fully completed designs, and no parts
need to be modeled. The focus of this section is on these low level estimation and
measurement methods. The energy consumption can be determined by using certain
energy estimation tools or having a hardware setup to measure the power [42].

Two popular power estimation tools used for Xilinx boards are the Xilinx Power
Estimator (XPE) and Xilinx Power Analyzer (XPA) [43]. These tools are easy and
fast to use, because they are made to work together with Vivado or ISE, which is
used to synthesize and generate the bitstream of designs on Xilinx FPGA’s. XPE
is used before the full HDL code is written, and XPA is used to analyze the design
when the full HDL code is available. This last one is of interest for this thesis.
Since the throughput per clock cycle of the implementations can be determined from
simulation, the energy consumption can be deduced from the power consumption.

XPA uses the real design and parameters like the clock frequency, board voltage
and the load on the output pins, to estimate the power consumption. In [42] the
accuracy of this tool is analyzed for several cryptographic algorithms. They found
the accuracy is highly dependent on the algorithm. The smallest error was 20% for
their implementation of basic RSA and the biggest 190% for basic DES. For most
algorithms, the error was under 50 %.

To measure the power consumption of the FPGA it is important to separate the
voltage supplies of the different elements (like IO-ports and FPGA voltage) [44, 45],
to measure only the current of the supply to the FPGA chip. By placing a small
known resistor and measuring the voltage over it, this current can be found. This
is the method used in a lot of commercially available boards [46, 45]. If the power
supply is capable of measuring the current it supplies, this can be used as well.

These measurements also include static power and the power generated by
supplying or generating the test vectors for the implementations. This power should
be determined or reduced to get accurate and comparable measurements.

15

3. Literature Review

The static power can be determined approximately by measuring the power when
the design is idle. This power is influenced by the state of the internal logic signals
and the temperature of the board. However when the design is small this influence
can be assumed negligible [44]. This assumption can be confirmed by measuring the
same design at different frequencies and confirming that the dynamic power follows
the frequency linearly.

To reduce the influence of the overhead on the FPGA that is used to test the
design (communication over USB, testvector generation,...), some setups use two
FPGA’s. Their power consumption is measured separately and one of them handles
all the overhead [46, 44]. If such a setup is not available, the designer can also use
a setup that keeps the overhead on the FPGA to a minimum (for example by only
supplying test vectors once and then reusing them).

3.5 Conclusion
This chapter contains the research background for the work in this thesis, which
serves as a basis for the work described in the further chapters.

Some methods were found that will help with the general approach to the designs.
A couple of different versions can be identified for each cipher and these can be
implemented, measured and compared. Low area implementations of AES and Ascon
were researched, which give direct ideas for the implementations in this thesis of
Joltik and Ascon (since Joltik is very similar to AES).

After that, general coding techniques for energy efficient FPGA design were
researched, the elements that lead to power consumption were identified, and the
influence of several factors on the power consumption was analyzed. This includes
previous research about the link between the power consumption and the number
of used LUTs, the influence of long paths, the influence of using embedded blocks
and the influence of the synthesis tool setting on the power consumption of some
cryptographic algorithms.

The last section contains research about methods to measure and estimate the
energy of the finished designs. The Xilinx Power Analyzer can be used to estimate
the power consumption of the design, and is easy to use because it is built in into the
synthesis tool. Its accuracy was examined for a number of cryptographic algorithms.
Some ways to measure the power consumption of the FPGA were found, as well as
methods to extract only the relevant portion of the power consumption (without all
the overhead).

16

Chapter 4

The Implementation Approach

Based on the research from Chapter 3, and on experience achieved during the progress
on the thesis, an implementation approach was formed for the implementations and
measurements of the ciphers. The approach is described in this chapter.

In Section 1, the general approach for the implementation of the ciphers is
described. The aim of having such a common approach is to get useful results.
Concretely, this is achieved by developing the implementations in a way that their
comparison is easier and more accurate.

One part of this, is the use of an API. This API and its advantages and disadvan-
tages are described in Section 2. In Section 3, the strategy to implement the ciphers
in this API is explained. The aim there is as well to facilitate the comparison of the
ciphers and their implementations.

Section 4 presents the architecture of the Spartan-6 on which the implementations
are placed and measured. Finally, in Section 5, the setup used to measure the energy
consumption of the ciphers is explained. The physical setup and the measures taken
to eliminate the inaccuracies introduced by several influencing factors are presented.

4.1 The General Approach

Multiple implementations of three different ciphers were made, totaling 24 implemen-
tations. Six of Joltik-128-64 and Joltik-64-64, three of Morus-640, four of Ascon-128,
and five of Ascon-128a. The implementations were then compared with each other,
and results from other research. The main goals of the comparisons are to compare
the trade-off between the area and energy consumption for the individual ciphers, to
determine the performance of the three ciphers, and to analyze how this trade-off
between area and energy consumption compares over the different ciphers and cipher
families. To make these comparisons more accurate, a common framework and
strategy is used during the design of the ciphers.

This is visible in the structure of the implementations: the same external interface
for the three algorithms is used (The GMU Hardware API described in Section 4.2),
there is a common approach to the implementation of the core ciphers, and the

17

4. The Implementation Approach

different implementations of the ciphers only change the absolute core and leave the
rest intact (this is explained in Section 4.3).

The implementations are written for the same FPGA, Spartan 6 (model xc6slx45
csg324-3), and the same measuring setup is used when measuring the power consump-
tion of all the implementations. The implementations are made specifically with this
FPGA in mind. Coding techniques that give good results on FPGAs are used (those
are discussed in Section 3.3), and in some implementations intrinsic functions of the
Spartan 6 are used to achieve a more efficient energy consumption or a lower area.

All implementations were written in VHDL, and they were simulated in Modelsim
Student Edition [47]. Their functionality was tested using the published reference
C-code of the ciphers together with the testbench provided with the GMU API. They
were synthesized using Xilinx ISE [48], and their power consumption was measured
with the Digilent Atlys board [49] (this setup is explained in Section 4.5).

4.2 The GMU Hardware API for Authenticated
Ciphers

Pre
Processor

Public
Data

Secret
Data

Cipher
Core

Post
Processor

Output
Data

aux fifoBypass
fifo

control
signals

control
signals

inputblock,
key, ...

outputblock,
tag

associative data,
headers

AEADCore

�
pw

�
sw

�
ow

�

bw
�

bw

Figure 4.1: The structure of the GMU Hardware API

The GMU Hardware API, is a hardware API proposed to provide a common
external interface for the hardware implementations of the ciphers participating in
the CAESAR competition. It makes the comparison of different algorithms easier
and fairer. The full specifications, features and the usage manual can be found in
the API paper [50].

The GMU Hardware API separates the development of the Core (which is called
CipherCore), containing the cipher specific part, and the external communication.
One of the useful features is the support for a wide range of data port widths
(ranging from 8 to 256 bytes), which are functionally completely separated from

18

4.3. Approach for the Core

the CipherCore. Furthermore, it also supports an arbitrary length of the input
stream. There is support for encryption and decryption with the same core. It is
relative lightweight, and it can communicate with simple devices like FIFOs to use
as memory.

Supporting VHDL code is provided, which fully takes care of external communi-
cation, the memory management and provides full width blocks to the CipherCore.
A schematic is given in figure 4.1. The API uses a PreProcessor and a PostProcessor.
The PreProcessor provides the key, public message number, secret message number,
block data and tag to the CipherCore, with information about the expected operation.
This indicates whether the data is AD or plaintext, whether the core has to encrypt
of decrypt, if the current is the last block, and more. The PostProcessor then takes
care of the output, accepting the crypted block from the CipherCore and delivering
it to the output port.

In the implementations made in this thesis, the CipherCore is implemented for
each cipher and fit in to this API. The area overhead introduced by the API is mainly
determined by the size of the input words and the block size used by the ciphers.
Since the three chosen ciphers have small block sizes (maximum 128-bit), and small
word widths are used in the inputs (32-bit), this overhead in absolute terms is not
that high. However, since the ciphers are all fairly small in area, the overhead in
relative terms it is not negligible.

The implementations are verified by generating test vectors with Python and C-
code provided with the GMU API. The test vectors are generated from the reference
C-code of the ciphers, which had to be made available by the developers as part of
the CAESAR competition [51]. These test vectors are then used by the test bench
when simulating the implementation in Modelsim.

The energy measurements are done on a part of the CipherCore (see Section 4.3),
because the overhead caused by this API is not of interest. When the ciphers will be
used they will be integrated in a bigger design the majority of time, and not use this
specific API. However the API forces the CipherCore of all ciphers to be structured
a certain way, which makes the comparison of them more accurate. It is also useful
to verify the correct functionality of the implementations with the API, and the
structure makes it easier to understand and possibly reuse the implementations with
different APIs in the future.

4.3 Approach for the Core

Now only the CipherCore has to be implemented to create a functional design. In
the implementations in this thesis, one lower level of hierarchy is created. A kernel
is placed inside the CipherCore that is a standalone entity that contains the core
of the cipher. For example in the case of the Joltik cipher, this would be the block
cipher Joltik-BC.

This kernel can function standalone, and has a start and busy signal so it can be
controlled. The advantages of splitting the design like this, is that the majority of
the area and energy will be consumed by this kernel, making it the focus of further

19

4. The Implementation Approach

Controller

Kernel

CipherCore

Datapath

inputblock,
key,...

control
signals

outputblock,
tag

control
signals

Start,
Mode Busy

control
signals

Input,
Key

Output

Figure 4.2: The structure of the implementations of the CipherCore

optimizations. The kernel can also be reused in other designs, even if the control
signals to control the design are completely different from those in the GMU API.
Everything outside the kernel can even be done in software, only using the kernel for
hardware acceleration.

Some logic is then placed around the kernel to link it to the GMU API. It consists
of a simple finite-state machine (FSM) and small datapath to convert the signals
provided by the API to the signals required by the kernel. This structure is shown
in Figure 4.2. The in- and outputs of the kernel are also visible on this figure. The
different implementations of each cipher then only change this kernel, and keep the
simple datapath and controller in the CipherCore the same. This kernel is the part
that is energy optimized and measured, and its results are compared.

The implementations of the kernel use the round-based structure of the three
ciphers, which is a common method to design these type of ciphers (see Section 3.2 in
the literature review). The starting implementation of the ciphers makes one round
fully combinational, and executes the cipher at the speed of one round per clock
cycle. The other implementations then serialize or unroll this implementation in
various degrees to find the energy-area-speed trade-off for the ciphers. The number of
implementations are listed in Table 4.1. Especially for the serialized implementations
specific optimizations can often be made.

20

4.4. Spartan 6

Version Number of implementations
Iterated Serialized Unrolled

Joltik − 64 − 64 1 2 3
Joltik − 128 − 64 1 2 3
Morus − 640 − 128 1 1 1
Ascon − 128 1 1 2
Ascon − 128a 1 1 3

Table 4.1: A summary of all the implementations made in this thesis

4.4 Spartan 6

FPGAs take advantage of the size and power efficiency of ASICs, while still providing
flexibility in the form of reprogrammability. Making them cheaper and faster to
develop on, but at the cost of worse specifications and cost-per-unit when made
in large batches. Because of the exponential growth of transistor density through
Moore’s law, FPGAs have become feasible for more and more applications since their
invention in 1982 [52].

The implementations in this thesis are made for a Spartan 6 FPGA, and the
energy is also measured on this FPGA. It is the sixth generation FPGA in the
Spartan FPGA Series, and was launched in 2009 [53]. The Spartan 6 is build in
low-power 45nm technology, and is designed to be a cost-effective solution for a wide
range of applications [54].

The specific model used in this thesis is the xc6slx45 csg324-3, which is a medium-
sized Spartan 6, consisting of 6822 slices [55]. The most relevant specifications are
listed in Table 4.2.

Device Slices Flip-Flops 6-to-2 LUT’s Block ram
XC6SLX45 6822 54576 27288 2088 Kb

Table 4.2: Features of Spartan 6 SLX45

The main logic resources for implementing the sequential and combinational logic
are the Configurable Logic Blocks (CLB). In the Spartan 6 they contain two slices
each, and each slice has four 6-to-2 LUT’s and eight D Flip-Flops. There are three
types of slices, where some can be configured as dedicated multiplexers, distributed
ram or shift registers [41]. This can greatly reduce the resources needed for these
elements. This is shown in Table 4.3.

These configurations can be inferred automatically from the VHDL code during
synthesis, or can be initialized specifically using Xilinx’s UNISIM package [56]. In
one of the implementations of this thesis this is used to create 16-bit wide, 4-bit deep,
distributed rams in just two slices.

Xilinx provides some guidelines about when elements should be manually initial-

21

4. The Implementation Approach

Feature SliceX SliceL SliceM
Occurence 50% 25% 25%
6-input LUTs X X X
8 Flip Flops X X X
Wide Multiplexers X X
Distributed RAM X
Shift Registers X

Table 4.3: Types of slices in the Spartan 6

ized and when they should be left to be inferred by the synthesis tool, and they give
some rules of thumb to decide what element is worth using [57]. An example of this
are guidelines about when to use block ram and when distributed ram. In Table 4.4
the resources used for the special elements are shown.

Element Slices LUT
6-to-2 LUT n.a 1
7-to-2 LUT n.a 2
8-to-2 LUT n.a 4
256x1-bit distributed RAM 1 n.a
32x8-bit distributed RAM 1 n.a
64x4-bit distributed RAM 1 n.a
32-bit shift register n.a 1
1-bit 8-to-1 multiplexer n.a 2
1-bit 16-to-1 multiplexer n.a 4

Table 4.4: The resources used when SliceL and SliceM are put in special configurations

Knowledge of this structure will make it easier to apply some energy saving
methods from the literature review to the implementations. For example the number
of LUTs used can be more easily predicted, which correlates to a lower power
consumption.

4.5 The Measuring Setup
The first measurement setup that was tried, was the SAKURA-G board [46]. This
setup did not work out as planned, so then the Digilent Atlys board [49] was used.
Only the kernel is measured on the boards (see Section 4.3). The two setups are
explained in this section, together with the measures taken to reduce influencing
factors like the overhead from supplying the test vectors, and the temperature. The
reasons why the SAKURA-G board was insufficient are discussed as well.

Since the final setup is easy and fast to use, there is no need to use energy
estimation programs to determine the energy. These estimations can be really

22

4.5. The Measuring Setup

Figure 4.3: The SAKURA-G board

inaccurate (see Section 3.4) so it is better to measure the power immediately if that
does not take too much time.

4.5.1 SAKURA-G Measurement Board

The SAKURA-G was developped at the Satoh Laboratory of the University of
Electro-communications in Tokyo, in cooperation with the Morita Tech Coorperation
in Taiwan [58]. It is designed to be used during R&D on hardware security, such
as research on Side-Channel Attacks (SCA), Fault Injection Attacks (FIA), and
Physical Unclonable Functions (PUF) [46].

The board is shown in Figure 4.3. It has two FPGAs, one main FPGA where
the cipher is rUn, and one controller FPGA that will supply the test vectors to the
main FPGA. Both FPGAs are Spartan 6’s. The power consumption of the main
FPGA is measured at the measurement point, where a small known resistor is placed
between the main FPGA power supply and the main FPGA. The voltage over this
resistor is measured to determine the power consumption (see Section 3.4). There

23

4. The Implementation Approach

is an amplifier on the board, but this only amplifies the alternating current (AC)
power, while to determine the power consumption, the direct current (DC) power is
needed. So this amplifier can not be used.

A small FSM was then placed on the controller FPGA. It can accept test vectors
through a USB connection (using the RS-232 standard [59]). And it passes these to
the main FPGA, which then activates one of the user I/O pins and starts the cipher.
The cipher is repeated a number of times (in the order of thousands), and the output
is always fed back into the input. Because the ciphers have the property that their
output approximates a random distribution of bits, this ensures a random selection
of inputs. The voltage is measured with an Agilent 6000 Series Osciloscope [60], that
uses the pin that is activated when the cipher starts running, as a trigger pin.

Unfortunately the DC measurements were very inaccurate and it was not possible
to get meaningful results out of this setup. The amplifier gave good outputs, but
these AC measurements were not enough to get an accurate power consumption.
That is why this setup was abandoned, but some elements were kept in the next
measurement setup.

4.5.2 Digilent Atlys Measurement Board

After the SAKURA-G board measurements were not satisfactory, the Digilent Atlys
measurement board was used. It is a ready-to-use development board which can
measure the power consumption of the FPGA on the board when used with the
Digilent Adept software [49].

The board is shown in Figure 4.4. It has only one FPGA, a Spartan-6 SLX45
with speed-grade 3. The current and power of the 3.3V, 2.5V, 1.8V and 1.2V supplies
are measured separately (the 1.2 Voltage is the Voltage to the FPGA). This current
is sampled at 5 Hz, and the margin of error is about 1%.

The main disadvantages of this board, compared to the SAKURA-G board, is the
slow sampling frequency (the sampling frequency of the SAKURA-G is determined
by the used oscilloscope and can be very high), and that there is only one FPGA.
To offset the first disadvantage, the cipher can be run millions of times, and the
measurement results will reflect the average power consumption of the ciphers.
To offset the second disadvantage, a setup needs to be made that minimizes all
the overhead on the FPGA. And this should be checked and confirmed through
measurements.

A small FSM is placed on the FPGA that accepts test vectors through USB and
supplies them to the cipher (on board). Just as in the SAKURA-G setup the output
of the cipher is fed back to its input each time the cipher is ran. The cipher is then
run millions of times (the number of times it should run is also passed through the
USB connection). To minimize overhead, this small FSM stays in one state while
the cipher is running, and almost no signals apart from the cipher are updated. It
also pauses the FPGA for two seconds before and after running the cipher.

Some C-code that does the same operations that are performed on the FPGA
was written. The final output of the ciphers on the FPGA is written back over the
USB connection and compared with the result of the C-code. A couple of short runs

24

4.5. The Measuring Setup

Figure 4.4: The Digilent Atlys board

test if the cipher functions correctly on the FPGA before the main measurements
start. These main measurements can not be verified directly because the millions of
runs on the FPGA would take hours to verify with the C-code.

The static and overhead power are measured when the FSM is in an idle state.
This is then subtracted from the measured power during operation. To confirm that
this setup is correct, the ciphers are run at multiple frequencies and it is confirmed
that the dynamic power follows a linear curve proportional to these frequencies.

There are between two and four clock cycles between the end and the start of a
new run of the cipher. The exact amount of cycles one run takes, and these overhead
cycles, are determined through simulation of the implementations in Modelsim.
Together with the measured power, the energy consumption can be calculated.

Since the power consumption of the ciphers is typically low, the FPGA does not
heat up much. So the influence of heat is expected to be minimal. In Figure 4.5 the
evolution of the power consumption over 10 minutes is shown when the FPGA is
started from a cold start. The effect of heat is not completely negligible, especially in

25

4. The Implementation Approach

0

1
00

2
00

30
0

40
0

50
0

60
0

0.182

0.184

0.186
P
ow

er
[W

]

(a) In idle state

0

1
00

2
00

30
0

40
0

5
00

60
0

0.255

0.260

0.265

P
ow

er
[W

]

(b) In moderate load

0

10
0

20
0

30
0

40
0

50
0

60
0

1.140

1.160

Time [s]

P
ow

er
[W

]

(c) In heavy load

Figure 4.5: Evolution of the power consumption when running Joltik-128 for 10
minutes

the most power hungry implementation. But if the operations are limited to under
a minute they are still accurate, and special care for this will be taken during the
measurements.

4.6 Conclusion

This chapter described the approach that is taken to implement the ciphers and how
their structure will look. The three next chapters will then list the implementations
and measuring results for the three chosen ciphers.

A hierarchy of the structure is determined for the implementations. An API is

26

4.6. Conclusion

used to provide the external interface, and only a part where the cipher is placed
(called CipherCore) has to be developed. The CipherCore will contain an additional
layer of hierarchy, with a kernel that contains the core of the ciphers. This kernel is
changed in each implementation, and the rest of the CipherCore is only changed for
each cipher.

The approach to the implementation of these kernels is also discussed. They make
use of the round-based structure of the ciphers, and different implementations of the
same ciphers are implementations where one round is either serialized or unrolled to
different degrees. This will facilitate finding the area-energy trade off for the ciphers.

Then the architecture of the Spartan-6 on which the implementations are placed
and measured is presented. Knowledge of this structure will help apply the energy
saving methods from Section 3.3. Some intrinsic functions of the FPGA can be used
in the optimized implementations.

Finally the measurement method is discussed. It is easy and fast to use, making
immediate measurement possible, and eliminating the need use inaccurate energy
prediction programs. The measurements are done on an Atlys Digilent board, which
can measure the power consumption of the FPGA separately from the consumption
of other elements on the board. Some measures are also taken to determine and
reduce the influence of external factors on the measurements.

27

Chapter 5

The Implementation of Joltik
Now that the implementation approach is determined, the implementations them-
selves are made. This chapter discusses the implementations of the first cipher,
Joltik. The area, energy, and throughput of these implementations is measured and
compared to each other. In the next two chapters the same will be done for the two
other ciphers Morus and Ascon.

In Section 1, the specifications of the Joltik cipher are explained in more depth.
This is important to understand the implementations, which are presented though
Sections 2 to 4. In Section 2, the iterated implementation is described, which
is also the reference implementation that the other implementations modify. In
Section 3, the two serialized implementations are described, and in Section 4, the
implementations with multiple unrolled rounds are discussed.

In Section 5, the most important measuring results are shown. The more detailed
results can be found in Appendix A for reference. In Section 6, these results are
discussed.

5.1 The Structure of Joltik
As mentioned in chapter 2.2, Joltik has a nonce-respecting and a nonce-misuse
resistant mode. Both modes use the same block cipher primitive Joltik-BC, but
differ in how they process the output from this block cipher. In this thesis, the
nonce-respecting mode is implemented.

This section, presents the specification of Joltik. The structure of the nonce-
respecting mode is explained first, followed by the structure of the tweakable block
cipher Joltik-BC.

5.1.1 The Nonce-Respecting Mode

A diagram of an encryption in that nonce-respecting mode is shown in Figure 5.1.
Confidentiality is achieved by a single encryption of each plaintext block. If the
message does not fit perfectly in the 64-bit blocks, the last block will padded and
processed in a slightly different way (this is visible on Figure 5.1). The padding is
done by adding a single ’1’ after the last message bit, and then filling the rest of the
last block with zeros.

29

5. The Implementation of Joltik

Joltik
BC

A1

Encrypt

Key

010|Npub|1
Joltik
BC

A2

Encrypt

Key

010|Npub|2
...

...

Joltik
BC

Ala

Encrypt

Key

010|Npub|la
Joltik
BC

Apad10∗

Encrypt

Key

110|Npub|la

Auth0

Joltik
BC

M1

Encrypt

Key

000|Npub|1

C1

Joltik
BC

M2

Encrypt

Key

000|Npub|2

C2

...

...

Joltik
BC

Mlm

Encrypt

Key

000|Npub|lm

Clm

Joltik
BC

Mpad10∗

00...

Encrypt

Key

100|Npub|lm

C∗

∑
0

Joltik
BC

Encrypt

Key

101|Npub|lm

Tag

Figure 5.1: High level diagram of the nonce respecting mode of Joltik

The AD is also put through the block cipher, and the outputs are XORed together
in to an authentication register. Together with a checksum of all the plaintext blocks,
followed by another encryption with Joltik-BC, the tag is generated. This tag is
added at the end of the ciphertext and is used to achieve integrity and authenticity
of the message.

In each call to Joltik-BC a key, tweak, input and the mode are given. The key
stays the same for the whole encryption or decryption of a message. However the
tweak is changed on every call, and is composed of a 3-bit tweak preamble, the public
nonce, and a block number. The sizes of these are variable, and are displayed in
Table 5.1 for the two implemented Joltik versions. The mode is either encryption or
decryption. Since the size of the block number is variable, the maximum length of a
message differs between the versions of Joltik.

Name key-size tweak-size public message blocknumber Joltik-BC
number size size version

Joltik − 64 − 64 64 64 32 29 Joltik-BC-128
Joltik − 128 − 64 128 64 32 29 Joltik-BC-192

Table 5.1: The sizes of the parameters for the analyzed versions of Joltik

When Joltik is used in decryption mode, the AD is processed in the same way as
for encryption, but the ciphertext is put through Joltik-BC in decryption mode, and
the checksum is generated from the output. The resulting decrypted message should
only be released when the provided tag is verified to be correct.

The time overhead for short messages is minimal, only a padding to a multiple of
64 bits and a single encryption to generate the tag is needed. Regarding resources,
at least two additional 64-bit registers are needed for holding the authentication and
checksum tag.

30

5.1. The Structure of Joltik

5.1.2 Joltik-BC

Key||
Tweak

Datain

h

h

h

2

4

RC0

Sbox Shift MDS

h

h

h

2

4

RC1

Sbox Shift MDS

...

...

...

RC2

...

h

h

h

2

4

Sbox Shift MDS Dataout

RCn

Figure 5.2: The rounds of the block cipher Joltik-BC-192

The tweakable block cipher Joltik-BC is very similar to the AES block cipher. It
consists of AES-like rounds [61], with the biggest difference in the key schedule, and
the state-size (64-bit blocks). The key schedule takes a key and a tweak as input to
create the subkey. The subkey is then XORed to the state, and the result is modified
in a number of steps. Depending on the version of Joltik-BC, this round is repeated
24 or 32 times. The subkey is also updated every round. There are two versions of
Joltik-BC, which differ only in the length of the key schedule and the number of
rounds (Table 5.2). The key-schedule input has the sum of the lengths of the key
and tweak.

Name key-schedule state-size number of
input rounds

Joltik − BC − 128 128 64 24
Joltik − BC − 192 192 64 32

Table 5.2: Parameters for the two different versions of Joltik-BC

In Figure 5.2, the structure of a round is shown. The top part displays the key
schedule and the bottom part displays the steps of a round. The Joltik-BC-192
version is shown in the figure, Joltik-BC-128 has the same structure except that the
bottom part of the key schedule is not there. All the operations are done on 64-bit
blocks, consisting of sixteen 4-bit nibbles, which are ordered as shown in Figure 5.3.

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Figure 5.3: Ordering of the 64-bit state of the block cipher Joltik-BC

The S-box operations consist of 4-bit S-boxes applied to each nibble. It is followed
by a shift operation that changes the relative position of the nibbles in the 64-bit
state. After that, the state matrix is multiplied by a Maximum Distance Separable
(MDS) matrix [62], which mixes the columns of the state matrix with each other.

31

5. The Implementation of Joltik

The keyschedule splits its 128 or 192-bit state in respectively two or three 64-bit
parts. These are also ordered according to Figure 5.3. It updates by first changing
the relative position of the nibbles through a permutation h, and then multiplying
the nibbles by 1, 2 or 4. All operations are done in the Galois field, GF (24). The
exact details can be found in the submission paper of Joltik [21].

During decryption, these operations are performed in the opposite order. The
S-box and shift operations are replaced by respectively, an inverse S-Box and inverse
shift. The MDS matrix does not change because MDS = MDS−1.

5.2 The Iterated Implementation

In this section, the iterated implementation of Joltik is described. This was also
the reference implementation and it determines the base structure for the other
implementations of Joltik in this thesis.

As described in chapter 4, the cipher is implemented with the GMU hardware
API. The developer only has to implement the CipherCore, which contains the
cryptographic cipher. The API handles the external interface and memory storage.
A separate kernel is then made in this CipherCore that contains the block cipher
Joltik-BC. This kernel is placed in the CipherCore, and a datapath and control FSM
link the control and data signals of the GMU API to the kernel.

After an initial optimization of the implementation, the kernel is the part of
the implementation that is further optimized for energy, and the part that will be
adapted in the other implementations of Joltik. As mentioned in chapter 4, this will
be the part that consumes the majority of energy, and its round-based structure can
be used to build unrolled and serialized implementations to analyze the area-energy
trade-off.

First, a short summary of the functioning of the GMU API is given, followed
by an explanation of how the kernel is linked to this API, and finally the iterated
implementation of the Kernel is described.

5.2.1 The GMU API

As can be seen in Figure 4.1 from the previous chapter, the API consists of a
PreProcessor, a PostProcessor, some external memory, and of course the CipherCore
itself.

The PreProcessor accepts user commands through two ports. A secret port, where
the secret key is provided, and a public port where the data (like the public nonce,
AD and plain- or ciphertext) and mode (encryption or decryption) are provided. It
passes the key and the data to the CipherCore, with the plaintext and AD provided
in blocks. The connections are full bit-width. Additional control signals are used to
specify the operation that should be performed by the CipherCore. The PreProcessor
can perform some supporting operations, such as padding the input blocks.

The PostProcessor accepts the output from the CipherCore, and stores the output
of the decryption in the auxiliary FIFO until the tag is verified. It also provides the

32

5.2. The Iterated Implementation

tag to the CipherCore in the last stage of decryption, or accepts this tag from the
CipherCore during encryption.

The bypass FIFO is used to pass data from the PreProcessor to the PostProcessor
that does not need to pass through the CipherCore. This is mainly the AD and the
tag.

Several generics can be set in the VHDL code of the GMU API. With these
generics the API can be customized to fit every cipher. This includes setting the
block size, padding method or disabling the use of a public or secret message number.

5.2.2 The CipherCore

Key

Public
Message
Number

Block number

Block mode

Joltik-BC
192

Block Data
Input

CheckSum
64-bit

0x0000...

0x8000...

Authentication
64-bit

Block Data
Output

Tag

Depadder

Expected
Tag

Tag Valid

ChecksumSel

InputSel

OutputSel

ChecksumEn

AuthEn

DepadderSel

Start Mode Busy

�
128

�
3

�
32

�
29

�
192

�
64

�
64

�
64

�
64

Figure 5.4: The datapath of the CipherCore of the Joltik

In Section 5.1.1, an overview of the Joltik cipher, and thus the functionality of
the CipherCore of the Joltik implementations, is given. The block cipher Joltik-BC is
implemented in a separate kernel with its own start and busy signal. This structure
is shown in Figure 4.2.

A small datapath and FSM are needed to connect the GMU API to the kernel.
These are displayed in Figure 5.4 and 5.5. The datapath of Joltik-128-64 is displayed.
The only difference with Joltik-64-64 is the size of the key, tweak, and the version of
the block cipher Joltik-BC.

The datapath contains an authentication and checksum register, needed to
store the temporary values for generating the authentication tag in the end. Some
additional multiplexers and constants are needed to be able to do the encryption and
decryption for all cases. For example, if there is no AD, an empty padded block is
encrypted before the message encryption is started. The datapath further connects
the data signals given by the Preprocessor and PostProcessor to the Joltik-BC kernel.

The datapath is controlled by a small FSM (Figure 5.5). It only uses control
signals from the Pre- and PostProcessor as input, and outputs certain control signals

33

5. The Implementation of Joltik

IDLEstart PROCESS

RUN
CIPHER1

RUN
CIPHER2

ke
y

ne
ed

s
up

da
te
|

up
da
te
ke
y

E
lse

bdi proc (start) |
update public message

number

bdi re
ad

y
(n

ew
blo

ck
) |

se
t c
or
re
ct
sig
na
ls

sta
rt
co
re
cip
he
r

E
ls
e

J
o
lt

ik
b
u
sy

=
1

Else

Joltik
busy

=
0 |

set correct signals

message finished |
set correct signals

E
ls
e

Figure 5.5: The Finite State Machine of the CipherCore of the Joltik

back to them, as well as to the CipherCore datapath.
The controller waits in the IDLE state for a key update, or for a start signal

(bdi_proc). The next state is the PROCESS state. There the controller waits until a
block is ready to be processed (which is indicated with the control signal bdi_ready)
and decides, based on other control signals from the API, how the next block should
be processed. The processing is done in the RUN_CIPHER states. It is stored what
type of block is being processed so the correct control signals can be passed to the
Joltik-BC kernel, the CipherCore datapath and the GMU API.

The communication with the kernel happens with a handshake, which uses the
start and busy signal of the kernel.

5.2.3 The Kernel

The kernel contains the block cipher Joltik-BC and will consume the vast majority
of the energy and area. In Section 5.1.2 an overview of the structure of this block
cipher is given.

The kernel takes a key, input data, mode (encryption or decryption), and a
start signal as input. It outputs the output data and a busy signal indicating when
it has finished encrypting or decrypting. The datapath and FSM of the iterated
implementation of Joltik-BC-196 (used by Joltik − 128 − 64) are displayed in Figures
5.4 and 5.5. Joltik-BC-128 (used by Joltik − 64 − 64) is very similar, but the key
schedule is only 128 bit big, instead of 192 bit. In the iterated implementation of
Joltik, one round is calculated every clock cycle.

34

5.2. The Iterated Implementation

Key || Tweak 32TweakSchedule

TK0
TK1
TK2

192-bit

State
64-bit

Data In

TweakSchedule

InvTweakSchedule

SBox Shift

MDS InvShift InvSbox

�
192

�
64

�
64

�
64

Round Constant

�
192

�
64

Data Out�
64

Figure 5.6: The Datapath of the iterated implementations of the kernel of Joltik (Joltik-
BC-196)

The datapath has 192 bits of registers to store the subtweakeys (128-bit in the
Joltik-BC-128 implementation), and a 64-bit register to store the state and final
output. The subtweakeys are 64-bit values that can be combined to form the subkey
of a round. The output of these registers passes through a hardware implementation
of a full round every clock cycle, and the result are fed back to the input of the
registers. The subkeys are not calculated beforehand, and are also updated every
clock cycle. This is done to conserve area and keep the complexity of the design low
(see Section 3.2.1).

The implementation is capable of both encryption and decryption. A multiplexer
decides whether the encryption path (where the S-box is applied first, followed by
the shift, and then the MDS multiplication), or decryption path (first the MDS
multiplication, then the inverse shift, and then the inverse S-box) is followed. An-
other multiplexer decides whether the subtweakeys are updated for encryption or
decryption.

During decryption, the starting subtweakeys are different than during encryption.
The function of the 32tweakschedule is to convert the input subtweakeys to their
version 32 rounds later, so they can be used as the starting subtweakeys in the
decryption mode. Because the operations mostly cancel themselves out in 32 cycles,
the critical path stays manageable. The 32tweakschedule is applied prior to the start
of the rounds and makes the cipher take one additional clock cycle, for a total of 33
clock cycles per data block. This is the function of the state STORE INPUTS in
the controller (Figure 5.7).

As described in Section 5.1.2, all sub operations are done on a matrix of sixteen
4-bit nibbles, and the operations individually either change the relative position of
these nibbles, or they change the nibbles themselves. This change of the relative
position is implemented by routing the 4-bit nibbles, and their value is changed by

35

5. The Implementation of Joltik

IDLEstart
STORE
INPUTS

ENCRYPT

DECRYPT

Start = 1 |
Store key

Store data In

Else

M
od
e
=
0
|

R
ou
nd
N
r�
0

M
ode

=
1 |

R
oundN

r
�

32

Roun
dN

r = 32

Else |
RoundNr+1

RoundNr = 0

Else |
RoundNr-1

Figure 5.7: The Finite State Machine of the iterated implementations of the kernel
of Joltik (Joltik-BC-196)

passing the nibbles through LUTs. In Table 5.3 this is listed for every subpart. The
LUTs on the FPGA are 6-input, 2-output LUTs (see Section 4.4). The synthesis tool
will combine the smaller LUTs in the HDL code to fit in the LUTs of the FPGA.

Part 2-to-1 LUT 3-to-2 LUT 4-to-4 LUT Complicated interconnections
32TweakSchedule 0 0 16
TweakSchedule 16 16 0 X
InvTweakSchedule 16 16 0 X
Sbox 0 0 16
InvSbox 0 0 16
Shift 0 0 0 X
InvShift 0 0 0 X
MDS multiplication 16 32 16

Table 5.3: The LUTs and wiring used for the sub parts in the iterated implementation
of the Joltik kernel (Joltik-BC-196)

5.3 The Serialized Implementations

In this section, the serialized implementations of Joltik are described. Compared to
the iterated implementation, only the kernel is changed in these implementations.
The description of the GMU API and the non-kernel part of the Ciphercore are
therefor not repeated in this section.

First, the standard serialized implementation is presented, where a round is split

36

5.3. The Serialized Implementations

in four parts, followed by an implementation where this is adapted to use distributed
ram instead of registers to store the internal state.

5.3.1 The Standard Serialized Implementation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AddSubTweakey

ShiftRows

Sbox

MDSMultiplication

Figure 5.8: Parallelism in an encryption round of Joltik-BC

In the iterated implementation (see Section 5.2.3), one round was unrolled, so
one round of the cipher was executed every clock cycle. When a round is analyzed,
it is visible that it has a lot of parallelism. Its structure can be split in four parts
relatively easy. Only a reordering of the S-box and shiftrows operations is necessary.
This is possible because the S-box operates on each 4-bit nibble separately and the
shiftrows operator only changes the order of the nibbles. The structure for encryption
is shown in Figure 5.8. The idea is based on an implementation of AES (see Section
3.2.1 in the literature review) [33].

When applying this to encryption and decryption at once, the structure shown in
Figure 5.9 is obtained. With an additional 48 bit of registers to store the intermediary
state, a round can be serialized with a factor four. In theory, this saves 12 four-bit
S-boxes, 12 inverse S-boxes and three MDS matrix multiplications. But it comes
at the cost of additional registers and multiplexers. The wiring also gets more
complicated, which makes optimizations harder for the synthesizer. The additional
multiplexers are 8-way multiplexers, which take 2 LUTs per bit (see Table 4.4),
making their influence not negligible.

The subtweakey generation is not split in four parts. The operations there are
already quite simple (see Section 5.1.2). It would also introduce three additional
registers of 48-bits, as well as complicated wiring and multiplexers, so it is not worth
it.

The datapath of the serialized implementation is shown in Figure 5.10. The
sub operations are implemented like in the iterated implementation, however only a
fourth of the resources are needed for them. The two 8-way multiplexers on the left
side of the datapath, take the 64-bit state and subkey and split it two times in four
times 16-bits. It is done two times, because the decryption operation has the shift

37

5. The Implementation of Joltik

0 1 2 3

0 or 1 and 13 2 3

4 5 6 7

4 5 6 and 14 7

8 9 10 11

8 9 10 11 and 15

12 13 14 15

12 13 and 1
14 and 6

15 and 11

AddSubTweakey

InvShiftRows

InvSbox

MDSMultiplication

ShiftRows

Sbox

Figure 5.9: Parallelism in a round of Joltik-BC (capable of both encryption and decryption)

at the end so it needs different input nibbles in a round (see Figure 5.9). On the
right side of the datapath, the 16-bit output is re-assembled to 64-bit (again in two
different ways, one for encryption and one for decryption).

Key || Tweak 32TweakSchedule

TK0
TK1
TK2

192-bit

State
64-bit

Data In

TweakSchedule

InvTweakSchedule

�
16

�
16 �

16

�
16

SBox Shift

MDS InvShift InvSbox
�
16

�
16

�
64

�
64

�
64

Temp
State
48-bit

�
16

�
64

�
16

�
192

�
64

�
64

�
64

Round Constant

�
192

�
64

Data Out�
64

Figure 5.10: The Datapath of the serialized implementation of Joltik-BC-196

38

5.3. The Serialized Implementations

5.3.2 The serialized Implementation with distributed RAM

0 4 8 C

1 5 9 D

2 6 A E

3 7 B F

RAM1

0 4 8 C

1 5 9 D

2 6 A E

3 7 B F

RAM2

Round Logic

Figure 5.11: The structure of the serialized Joltik-BC implementation with distributed
ram

The previous implementation uses 8-way multiplexers, which use a lot of resources.
Even if the dedicated multiplexer configuration of the slices is used, the multiplexer
still uses two LUTs per bit that is multiplexed.

To reduce the required resources, ram can be used to store the internal state. In
that case, only the correct addresses need to be passed to the ram to select the correct
data for the cycle, removing the large multiplexers. The same idea has successfully
been applied to AES [33] (see Section 3.2.1 in the literature review). Since the state
that needs to be stored is quite small, and a large part of it is needed each clock
cycle, it is best to use distributed ram [57]. This is implemented by reconfiguring
slices into ram. It was discussed in Section 4.4.

A simplified data arrangement for the state during encryption is shown on the
left side of Figure 5.11. Two times 64 bit need to be stored in total, and four nibbles
of 4 bit need to be read and written each clock cycle. The correct addresses are
selected to connect the input nibbles to the output nibbles. In Figure 5.11, this is
shown for the first encryption cycle (nibble 0, 5, 10 and 15 are connected to nibble
0, 1, 2 and 3 through the round logic). The path followed and memory used in the
cycle is shown in bold on the figure.

Both memories can be used as input and output memory, and their function is
swapped each round. During decryption, a different nibble arrangement is needed
because the inverse shift is done after the MDS multiplication. In the first cycle
nibbles 0, 1, 2 and 3 are written to 0, 5, 10 and 15, instead of the other way around.
However, this can be achieved simply by giving different addresses tot the rams.
Finally, a similar arrangement is used for the subtweakeys to eliminate the registers
and 8-way multiplexers there.

39

5. The Implementation of Joltik

In the actual implementation, the primitive RAM32M [63] is used. It configures
four LUT’s in to a 8-bit wide, 32-bit deep ram. So two of them, which occupy two
slices, can be used for one of the memory banks displayed in Figure 5.11. For the
state and subtweakeys together, a total of 16 of these are needed for Joltik-BC-196,
and 12 for Joltik-BC-128.

5.4 The Unrolled Implementations

In the unrolled implementations multiple rounds are unrolled, which are then executed
in one clock cycle. This leads to a bigger area needed for the logic, which will consume
more power and lead to a lower maximum clock frequency. But because less clock
cycles are needed per data block, and the overhead from writing to and reading
from the registers is reduced, this might reduce the energy consumption and cause a
higher throughput. The synthesizer will also have more opportunity for optimization.
The purpose of these implementations is to analyze the area-speed-energy trade-off
for Joltik.

The implementations are made by placing the round logic of the iterated imple-
mentation (described in Section 5.2.3), multiple times after each other. The round
logic is the part in the big rectangle on Figure 5.6. Unrolled implementations of
factor 2, 4 and 8 are made for both the Joltik-BC-128 and Joltik-BC-192 versions
(referred to as unrolled2, unrolled4, and unrolled8 respectively in later sections).

No pipelining is used, because the aim is to look at the benefits of combining the
logic of multiple rounds in one, and to find the moment when the additional power
consumption from glitches and long paths has a bigger influence than the reduced
overhead and benefits of the combined logic.

5.5 The Measurements Results

There are six different implementations for each of the two versions of Joltik (Joltik-
BC-128 and Joltik-BC-192). All implementations had their power consumption
measured according to the setup described in Section 4.5. The maximum frequency
and area of the implementations is determined by synthesizing the implementation
with a wrapper at different clock speed constraints. These results are presented in
this section, but a more detailed report of the results can be found in Appendix A.

The dynamic power consumption of the Joltik-BC-192 implementations is shown
in Figure 5.12. For reference, the static power consumption was around 200 mW.
The measurements are done at 25 MHz, 50 MHz and 100 MHz, unless the maximum
speed of the implementation was slower. The dynamic power consumption should
follow a linear relationship with the frequency, and this was observed to be the
case. This is a good indication that the dynamic power consumption was indeed
obtained. Only the really low power measurements at 25 MHz were inconsistent at
times. This error can be attributed to measuring inaccuracies, since their values are
close to the measuring accuracy (the measuring accuracy is around 3 mW, and some
measurements only consume 10 mW).

40

5.5. The Measurements Results

0 20 40 60 80 10
0

0

20

40

60

Frequency [MHz]

D
y
n
a
m
ic

P
ow

er
[m

W
]

iterated
serialized RAM

serialized

0

20 40 60 80 10
0

0

500

1,000

1,500

Frequency [MHz]

unrolled8
unrolled4
unrolled2
iterated

Figure 5.12: The dynamic power consumption of the Joltik-BC-192 implementations

The energy consumption is then calculated by combining the power consumption
and the amount of clock cycles that are needed to process a block. The energy
consumption for the three measured frequencies is then averaged. This energy
consumption is determined during encryption and decryption, which is displayed
in Figure 5.13. Because of scaling issues, the unrolled8 implementations are not
displayed on the graph. They had a value of 3.745 J/Gb and 4.825 J/Gb for
encryption, and 4.060 and 5.090 J/Gb for decryption (for respectively Joltik-BC-
128 and Joltik-BC-192). This is more than 10 times as inefficient as the iterated
implementation.

A difference between encryption and decryption is visible, especially for the
iterated and the serialized implementations that use distributed ram. There is also a
big difference between the two versions of Joltik, despite that they only differ in the
key schedule. The energy consumed during encryption and decryption is averaged to
obtain the average energy consumption of the implementations.

In the top part of Figure 5.14, the energy consumption is compared to the area of
the implementations. And in the bottom part, the energy consumption is compared
to the throughput if the implementations were to be run at their maximum frequency.

In Joltik-BC-192 it is visible that the unrolled4 and unrolled8 implementations,
are visibly worse than the rest. Just like the two serialized implementations (with
the exception that the serialized ram implementation is a negligible amount smaller
than the iterated implementation). It should be noted that the area measurements
are quite inaccurate because if the synthesis is ran multiple times, slightly different

41

5. The Implementation of Joltik

1
9
2
-I
te
ra

te
d

1
9
2
-S

e
ri
a
li
z
e
d

1
9
2
-S

e
ri
a
li
z
e
d

R
a
m

1
9
2
-U

n
ro

ll
e
d
2

1
9
2
-U

n
ro

ll
e
d
4

1
28
-I
te
ra
te
d

1
28
-S
er
ia
li
ze
d

1
28
-S
er
ia
li
ze
d
R
am

1
28
-U

n
ro
ll
ed
2

1
28
-U

n
ro
ll
ed
4

0

0.5

1

1.5

2

E
n
er
gy

p
er

g
ig
ab

it
[J
/G

b
]

Encryption
Decryption

Figure 5.13: The energy consumption of the Joltik-BC implementations

results will be obtained every time. The numbers are therefor just an indication of
what size the implementation will be.

5.6 Interpretation of the Results
It is visible from the measurement results that Joltik does not have much potential to
be unrolled or serialized. Any unrolling beyond two gives worse results in both energy,
area and maximum throughput. An explanation is that a round has complicated
wiring (mainly because of the shift and inverse shift functions), and when combining
multiple rounds, more glitches are induced that cause slower timing and higher power
consumption.

The results seem to confirm this, since the smaller Joltik-BC-128 responds better
to unrolling. The proportional increase of the required energy, and lower maximum
clock frequency for each unrolled implementation, is smaller than in the case of the
bigger Joltik-BC-192. When a round is unrolled 8 times, and even the Joltik-BC-128
implementation becomes too complex, the results worsen drastically.

Joltik also does not benefit much from serialization. Only a minuscule area
reduction is achieved, at the cost of more than double the energy consumption and a
four times lower throughput. Using distributed ram doesn’t seem to make much of a
difference either. This is in contrast with the large area reduction that was achieved
in AES with a similar method (see Section 3.2.1).

An explanation is that Joltik has small logic already in the iterated implemen-
tation. For example it has 4-bit S-boxes as opposed to the 8-bit S-boxes of AES,
which are a lot bigger in hardware. The serialization overhead has a bigger effect

42

5.6. Interpretation of the Results

0

0
.5 1

1.
5 2

2.
5 3

3.
5 4

4
.5

0

500

1,000

1,500

Energy per gigabit [J/Gb]

A
re
a
[s
li
ce
s]

0

0.
5 1

1
.5 2

2
.5 3

3.
5 4

4.
5

0

0.2

0.4

0.6

0.8

1

Energy per gigabit [J/Gb]

M
ax

th
ro
u
g
h
p
u
t
[G

b
/s
]

Joltik-BC-128
Joltik-BC-192

iterated
serialized

serialized RAM
Unrolled2
Unrolled4
Unrolled8

Figure 5.14: The area and maximum throughput versus the energy consumption of
the Joltik-BC implementations

than the achieved logic reduction. Further, it is possible the number of used registers
and LUTs have been reduced, but because the implementation is so small this is not
visible in the number of used slices.

The number of used LUTs and registers of the serialized implementations are listed
in Table 5.4. In the first serialized implementation, the number of registers increases
because of the additional registers to hold the temporary state. Unfortunately the
number of LUTs don’t change much, the overhead from the complicated wiring and
additional multiplexers outweigh the benefits of the reduced logic.

In the serialized implementation with distributed ram it is visible that the
number of registers is highly reduced, and the number of LUTs stays the same or
even decreases. So using the ram had an effect on the area. However the energy
consumption increased, and since the area effect is not visible in the number of slices,
the implementation does not have many benefits over the iterated implementation.

43

5. The Implementation of Joltik

Implementation Joltik-BC-196 Joltik-BC-128
LUT’s Registers LUT’s Registers

Iterated 683 297 555 205
Serialized 685 329 457 254
SerializedRam 604 121 444 109

Table 5.4: The number of LUTs and Registers used in certain Joltik-BC implementa-
tions

In Table 5.5, the area, maximum throughput and energy consumption of the
implementations that offer a relevant trade-off are listed. At the cost of a 87%
increase in area and a 54% increase in energy, Joltik-BC-192 can be made 31 %
faster. Joltik-BC-128 can be made 49% faster at the cost of a 36% area and 37 %
energy increase. This is a trade-off that might be useful in some applications.

Implementation Area LUTs Registers Energy max throughput
(Slices) (J/Gb) (Gb/s)

BC-192-Iterated 213 267 683 0.357 0.290
BC-192-Unrolled2 399 272 1539 0.551 0.380

BC-128-Iterated 180 205 555 0.246 0.346
BC-128-Serialized 156 254 457 0.500 0.077
BC-128-Unrolled2 245 201 863 0.338 0.516

Table 5.5: The measurement results for the best Joltik-BC implementations

A benefit of Joltik that should be noted, is that it has no initialization phase and
a really small finalization phase, with a length equivalent to only one data block. So
the listed results will be achieved for almost any message length (a message of 0.5
Kb already achieves 90% of this maximum performance).

5.7 Conclusion
All the implementations of Joltik and their performance were discussed in this
chapter. Six implementations were made of both Joltik-BC-128 and Joltik-BC-192,
which are used in Joltik − 64 − 64 and Joltik − 128 − 64 respectively. An iterated
implementation, two serialized implementations (one with distributed ram and one
without), and three unrolled implementations with a unrolling factor of 2, 4 and 8.

Only some of these implementations offered a relevant improvement or trade-off,
but even then this was pretty minor. The iterated implementation still performs
the best in most of the cases. Some possible explanations for the results were also
discussed. The next two chapters will present the implementations and their results
for the next two ciphers, and in Chapter 8 the three ciphers will be compared with
each other.

44

Chapter 6

The Implementation of Morus

In this chapter, the implementations of Morus and their performance are discussed.
The implementation approach for these implementations was detailed in Chapter 4.
The area, energy, and throughput of the implementations is measured and compared
to each other. In the previous chapter, this was done for the Joltik implementations,
and in the next chapter it will be done with respect to Ascon.

In Section 1, the specifications of the Morus cipher are explained in more depth.
This is important to understand the implementations, which are presented though
Sections 2 to 4. In Section 2, the iterated implementation is described, which is also
the reference implementation that the other implementations modify. In Section 3,
the serialized implementation is described, and in Section 4, the implementation
where all five rounds of Morus are unrolled is discussed.

In Section 5, the most important measuring results are shown. The more detailed
results can be found in Appendix B for reference. In Section 6, these results are
discussed.

6.1 The Structure of Morus

Morus has three different recommended parameters, one of which is implemented in
this thesis, namely Morus-640 (see Section 2.3). Morus uses a custom state update
function to update its state every time a new block of data is processed.

In this section the specification of Morus is presented. First, the global structure
of Morus-640 is explained, followed by the structure of the state update function.

6.1.1 Morus-640

A diagram of an encryption with Morus-640 is given in Figure 6.1. Confidentiality is
achieved by XORing the internal state with the plaintext to generate the ciphertext
(the output generator in Figure 6.1). And authenticity and integrity are achieved by
injecting the plaintext in the state update function.

The internal state consists of five times 128-bit, for a total of 640 bits. The only
other storage needed is a 128-bit register to hold the input during the finalization.

45

6. The Implementation of Morus

IV128

Key128

1128

const0

const1

State

Update

0128

State0

State1

State2

State3

State4

...
x15

State2

State1

State0

State3

State4

Key

State0

State1

State2

State3

State4

State

Update

AD128
1

State0

State1

State2

State3

State4

... State2

State1

State0

State3

State4

State

Update

M 128
1

Output
generator C128

1

State0

State1

State2

State3

State4

State0

State1

State2

State3

State4

... State2

State1

State0

State3

State4

ADlen||Mlen

State0

State1

State2

State3

State4

State

Update

State0

State1

State2

State3

State4

...
x7

State2

State1

State0

State3

State4

Tag
generator Tag

Figure 6.1: High level diagram of Morus-640

After initialization, the AD and plaintext are inserted in the state update function
in 128-bit blocks. If the last block is not the full 128 bit, it is padded with zeros.

The structure of the decryption mode is similar. The ciphertext is processed in
the same way as the plaintext, but this plaintext is then used as input to the state
update function. So an additional 128-bit register is needed to hold it (or the register
that is used during the finalization can be reused).

To achieve 128-bit security with a good margin, the initialization and finalization
stage have to be quite long, requiring 16 and 8 times the effort of the encryption of a
single 128-bit block respectively.

6.1.2 The State Update Function

State00

State01

State02

State03

State04

Rotate0

Shift0

State10

State11

State12

State13

State14

Rotate1

Shift1

State20

State21

State22

State23

State24

Datain

Rotate2

Shift2 State30

State31

State32

State33

State34

Datain

Rotate3

Shift3

State40

State41

State42

State43

State44

Datain

Rotate4

Shift4

State00

State01

State02

State03

State04

Datain

Round 1 Round 2 Round 3 Round 4 Round 5

Figure 6.2: The five rounds of the round update schedule used in Morus-640

The state update function is a dedicated function designed for Morus, partially

46

6.2. The Iterated Implementation

based on a type 3 Feistel scheme [19]. It consists of five rounds, that have a short
critical path and only use XOR, shift and AND operations. The full state update
function is shown in Figure 6.2.

The rotation function splits the 128-bit substate up in parts of 32-bit, and shifts
these by an amount that is dependent on the current round. The shift function,
shifts the whole 128-bit substate by a certain amount. The constants can be found
in the specification paper of Morus [23]. The critical path of one round consists of
an AND-gate, two XOR-gates and a bit rotation, which suggest that full unrolling of
the five rounds could give good results (this is done in Section 6.4).

6.2 The Iterated Implementation

In this section, the iterated implementation of Morus is described. Just like in the
case of Joltik (see Section 5.2), the iterated implementation is also the reference
implementation. It determines the base structure for the other implementations of
Morus in this thesis.

Like all three ciphers in this thesis, Morus is implemented with the GMU hardware
API. The developer only has to implement the CipherCore, which contains the
cryptographic cipher. A separate kernel in this CipherCore contains the state update
function, and a small datapath and control FSM in the CipherCore link the kernel
with the GMU API.

The kernel is the part of the implementation that is further optimized for energy,
and the part that will be adapted in the other implementations of Morus. Similar to
the case of Joltik, and as described in chapter 4, this will be the part that consumes
the majority of energy, and its round based structure can be used to make unrolled
and serialized implementations to analyze the area-energy trade-off.

The GMU API works the same way as in the case of Joltik, and will therefor
not be repeated in this section (see Section 5.2.1). First, an explanation of how the
kernel is linked to the GMU API is provided, followed by a description of the iterated
implementation of the kernel.

6.2.1 The CipherCore

In contrast to the block cipher-based algorithm Joltik, Morus’ internal state needs to
be stored between calls to the state update function. Additional small operations are
done on this state during some stages of execution. For example after initialization,
a part of the internal state is XORed with the key (see Section 6.1.1).

This internal state is stored in the kernel itself, so to support these slight differences
between the stages, the kernel has five modes in which it can operate (this is clarified
in Section 6.2.2). It also has a port for the block size, which is of relevance if the last
block of the decryption does not fit in one 128-bit block. And necessary data inputs
are also supplied to the kernel, e.g. the key, public nonce, message length,... They
are directly linked to the GMU API. This keeps the datapath of the CipherCore
really simple. It is shown in Figure 6.3.

47

6. The Implementation of Morus

Morus
Stateupdate

Associate
Data

Length

Plaintext

Length

Key

Public
Message
Number

Block Data
Input

�
64

�
64

�
128

�
128

�
128

Start Mode Size Busy

Block Data
Output

Tag

Tag ValidExpected
Tag

�
128

�
128

�
128

Figure 6.3: The Datapath of the CipherCore of Morus

IDLEstart PROCESS

RUN
CIPHER1

RUN
CIPHER2

ke
y

ne
ed

s
up

da
te
|

up
da
te
ke
y

E
lse

bdi proc (start) |
update public message

number

bdi re
ad

y
(n

ew
blo

ck
) |

se
t c
or
re
ct
sig
na
ls

sta
rt
co
re
cip
he
r

E
ls
e

M
o
ru

s
b
u
sy

=
1

Else

M
orus

busy
=

0 |

set correct signals

message finished |
set correct signals

E
ls
e

Figure 6.4: The Finite State Machine of the CipherCore of Morus

48

6.2. The Iterated Implementation

Reg0
128-bit

Reg1
128-bit

Reg2
128-bit

Reg3
128-bit

Reg4
128-bit

Regout
128-bit

<< 96

Padder

Regin
128-bit

<< 3

<< 3

0x0000...

Rotate

Shift
0xFFFF...

Constant0

Constant1

Key

Public
Nonce

Data in

Associative
Data
Length

Plaintext
Length

Data out

�

128-bit

�

128-bit

�

128-bit

�

128-bit

�

64-bit

�

64-bit

�

128-bit

Figure 6.5: The datapath of the iterated implementation of Morus

The controller is relatively simple as well. It translates the control signals of the
GMU API, to those of the kernel. It is shown in Figure 6.4. It works the same as
the controller of the Joltik CipherCore, and was already explained in that section
(Section 5.2.2). A handshake is used for communication with kernel, using the its
start and busy signal.

6.2.2 The Kernel

The Kernel contains the state update function. In Section 6.1.2, an overview of this
state update is given. This hardware implementation consists of a datapath and a
FSM. In Figure 6.3 the in- and outputs of the kernel are visible. The datapath and
control FSM of the iterated implementation of the kernel are shown in Figures 6.5
and 6.6.

The round update schedule applies simple operations with four of the five internal
state registers. These are visible in the middle-right of Figure 6.5. To avoid having
to multiplex the state registers to these operations, the results are stored in different
registers for each round instead. If the actual storage would be compared to Figure
6.2, Register 0 would hold state 0 in the first round, but the result would then be
written in Register 4, so when the next round starts, the round logic has the same
inputs.

49

6. The Implementation of Morus

IDLE

INITIALIZE ENCRYPT

DECRYPTTAG

Start
&
M
ode

=
0 |

load
key, IV

and
constants

R
oundN

r
�

0
&
Inreg
�

0

St
ar
t
&
M
od
e
=
1
|

lo
ad

in
pu
t
in
R
eg

in

R
ou
nd
N
r�

0

Se
t
se
l s
ig
na
ls
fo
r
ro
un
d

St
ar
t
&
M
od
e
=
2
|

loa
d
in
pu
t i
n
Re
g
in

G
en
er
at
e o
ut
pu
t

Ro
un
dN

r�
0

Se
t s
el
sig
na
ls
fo
r r
ou
nd

Start
&
M
ode

=
3 |

G
enerate

output

R
oundN

r
�

0

Set
sel signals

for
round

St
ar
t
&
M
od
e
=
7
|

lo
ad
in
pu
t
in
D
at
a
in

R
eg
4
�

R
eg
0
xo
r
R
eg
4

R
ou
nd
N
r�
0
&
In
re
g�

0

Else |
RoundNr +1

Set sel signals for round
R
o
u
n
d
N
r
=

5
|

R
ou

n
d
N
r�

0
&

in
re
g+

1
S
et

se
l
si
gn

al
s
fo
r
ro
u
n
d

inreg
=
15 |

R
eg1
�

R
eg1

xor
key

Else |
RoundNr +1

Set sel signals for round

R
ou
nd
N
r
=
4
|

R
ou
nd
N
r
+
1

Se
t
se
l s
ig
na
ls
fo
r
ro
un
d

Else |
RoundNr +1

Set sel signals for round

R
oundN

r
=
4 |

R
oundN

r
+
1

Set
sel signals

for
round

Else |
RoundNr +1

Set sel signals for round

R
o
u
n
d
N
r
=

5
|

R
ou

n
d
N
r�

0
&

in
re
g+

1
S
et

se
l
si
gn

al
s
fo
r
ro
u
n
d

in
re
g
=
7
|

ta
g
�

R
eg
1
xo
r
R
eg
2
xo
r
R
eg
3
xo
r
R
eg
4

Figure 6.6: The FSM of the iterated implementation of Morus

To support all modes of execution, the hardware implementation of the kernel
has some additional hardware apart from the logic needed for the state update (for
example to XOR with the key after initialization and to generate the output from
the state). These are the two XORs on the top of Figure 6.5.

There is a register to hold the output, and a register to hold the temporary value
needed during the generation of the tag. The registers are called Regout and Regin

respectively on Figure 6.5. All logic at these two registers is there to either generate
the plain- or ciphertext from the internal state, generate the final tag, or generate
the temporary value for the tag (shown respectively from top to bottom on Figure
6.5).

The FSM (shown in Figure 6.6) controls all the multiplexers, and enables the
correct registers, based on the execution mode (initialization, associated data, en-

50

6.3. The Serialized Implementation

cryption, decryption or finalization) and the current round. During initialization and
finalization, the rounds have to be repeated multiple times. The iterated implemen-
tation executes at the speed of one round per clock cycle, so processing one block
takes five clock cycles.

6.3 The Serialized Implementation

In this section the serialized implementation of Morus is described. Like in all
implementations, only the kernel is changed compared to the iterated implementation.

One round is serialized by a factor four, and thus takes four clock cycles to
execute instead of one. The aim of this implementation is to reduce the resources
(chip-area) taken by the implementation, at the cost of a slower execution and higher
energy consumption per block. However as was seen in Joltik (in Section 5.5), a
good result is not guaranteed.

Rot Rot Rot Rot

Message
block

�
32

�
32

�
32

�
32

�
128

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

�
32

State 0 State 1 State 2 State 3 State 4

Figure 6.7: The structure of a round of Morus-640

In Figure 6.7, the structure of a round is shown. Because the rotation works
on 32-bit parts of the state, and the shift operation shifts in multiples of 32-bit, no
additional registers are needed to store intermediary values if a round is split into
four parts. If it would be split in more than four parts, some registers would be
required to store intermediary values of the rotation and shift operation.

In practice this means that every 128-bit state register from the iterated imple-
mentation, is split into four 32-bit registers. A multiplexer selects which of those
four are connected to the round logic every cycle. These multiplexers create some
additional overhead, so the area increase has to be offset by the reduction of round
logic for there to be any improvement.

The variable shift in each round (see Figure 6.2), shifts with either 32, 64 or 96
bits. Because these are multiples of 32-bits, it can be achieved by simply selecting a

51

6. The Implementation of Morus

different sub-state register as needed (this mixing is also visible in Figure 6.7). The
controller keeps track of what sub-register has to be selected in each round in state 3.

All these changes are applied to the iterated implementation, and the external
functionality is kept the same, with the exception that one state update takes four
times as much cycles now. When this kernel is placed in the CipherCore it therefor
works as intended.

6.4 The Unrolled Implementations

The short critical path of the state update indicates that good performance could
be achieved if multiple rounds are unrolled. Since five is a prime number, the
implementation can not be unrolled with a factor smaller than five without a lot of
overhead. However, because the critical path is so short, it would be expected that
an unrolling of five would give the best results anyway. This implementation of the
kernel is discussed in this section.

When all five rounds are unrolled, the critical path doesn’t become five times as
long, but less than three times. One AND-gate, 6 XOR gates and three bit rotations,
instead of an AND-gate, 2 XOR gates and one bit rotation. This can be deduced
from Figure 6.2. On FPGA the critical path will be reduced even more because the
synthesizer can combine multiple operations in a single LUT.

This is then applied in a straightforward way to the datapath of the iterated
kernel, so all extra functionality is kept. The implementation can process one 128-bit
block in each clock cycle. However the GMU API is limited to a lower speed. So
when used with the API, the speed is limited to 3 clock cycles per block if 128-bit
input and output ports were to be used. This overhead is a big disadvantage of the
API and one of the reasons why all measurements are done on the Kernel, and not
the CipherCore or GMU API (see Section 4.2).

6.5 The Measurements Results

The measurement results of the three implementations of the Morus kernel are
presented in this section. Just as in the case of Joltik, the implementations are
measured with the setup described in Section 4.5. The maximum frequency and area
of the implementations are determined by synthesizing the implementations with
a wrapper at different clock speed constraints. These results are presented in this
section, but a more detailed description can be found in Appendix B.

The dynamic power consumption during encryption with the implementations at
the three measured frequencies is shown on the left in Figure 6.8. For reference, the
static power is around 200 mW. The dynamic power follows the frequency linearly,
which confirms that what is measured is indeed the dynamic power. When the energy
per block is determined and averaged over the frequencies, the results on the right of
Figure 6.8 are obtained. The energy consumed during encryption is very similar to
that during decryption. This is expected because the operations are almost exactly
the same (see Section 6.1.2).

52

6.6. Interpretation of the Results

0

20 40 60 80 10
0

0

50

100

150

200

250

Frequency [MHz]

D
y
n
am

ic
P
ow

er
[m

W
]

iterated
serialized
unrolled5

It
e
ra

te
d

S
e
ri
a
li
z
e
d

U
n
ro

ll
e
d
5

0

5 · 10−2

0.1

0.15

0.2

E
n
er
g
y
p
er

g
ig
ab

it
[J
/G

b
]

Encryption
Decryption

Figure 6.8: The dynamic power consumption and energy consumption of the Morus
implementations

In Figure 6.9, the required energy of the implementations is compared to respec-
tively the area and the throughput. There is a clear trade-off visible between the
three implementations, where speed and energy efficiency come at the cost of area.

In contrast to Joltik and to a lesser degree Ascon, Morus has a big initialization
and finalization stage. This means that the previous energy efficiency and throughput
are obtained only for large messages. This is shown in Figure 6.10. At message lengths
of 20-30 kB, all implementations are within 10 % of their maximum throughput and
minimum energy consumption.

6.6 Interpretation of the Results

From the measurement results it is visible that Morus is very suited to unrolling.
Unrolling the full five rounds leads to a power consumption of about 2.5 times the
power consumption of the iterated implementation, but at five times the speed,
approximately halving the energy use per data block. Unfortunately Morus only
has five rounds, and no other unrolling factors can be tested without making the
implementation incompatible with the used API.

This result was expected because of the really short critical path of Morus.
Unrolling reduces the influence of the overhead of the registers and routing on the

53

6. The Implementation of Morus

0

0
.0
5

0.
1

0.
1
5

0.
2

0

200

400

600

Energy per gigabit [J/Gb]

A
re
a
[s
li
ce
s]

iterated
serialized
unrolled5

0

0.
0
5

0.
1

0.
15 0.
2

0

5

10

15

Energy per gigabit [J/Gb]

M
ax

th
ro
u
gh

p
u
t
[G

b
/s
]

Figure 6.9: The area and maximum throughput versus the energy consumption of
the Morus implementations

0

20 40 60 80 10
0

0.000

5.000

10.000

15.000

Message Length [Kb]

T
h
ro
u
gh

p
u
t
[G

b
/s
]

iterated
serialized
unrolled5

0 20 40 60 80

10
0

0.000

0.200

0.400

Message Length [Kb]

E
n
er
g
y
p
er

g
ig
ab

it
[J
/G

b
]

Figure 6.10: The throughput and energy consumption in function of the message
length for the Morus implementations

54

6.7. Conclusion

Implementation Area LUTs Registers Energy max throughput
(Slices) (J/Gb) (Gb/s)

Serialized 468 1407 955 0.162 0.756
Iterated 616 1965 944 0.047 4.861
Unrolled5 765 2618 945 0.021 16.322

Table 6.1: The measurement results for the best Morus implementations

total energy, maximum clock speed and area. The path is probably also short enough
so glitches don’t make the power rise drastically, as was the case in Joltik.

Serializing Morus leads to a small reduction in area of about 25% compared to
the iterated implementation. However the power consumption drops less than 20%,
with the implementation taking four times as long to complete a block. This leads
to a much larger overall energy consumption. The area reduction is not coming close
to the theoretical reduction of 75% by serializing with a factor four. This could be
due to the overhead of the multiplexers that connect the state registers to the round
logic, and because the number of registers is not reduced when serializing.

In Table 6.1 the area, maximum throughput, and energy consumption of the three
implementations is listed. All the implementations offer some trade-off compared
to each other. The serialized implementation is 25 % smaller than the iterated
implementation, but at the cost of a 3.5 times larger energy consumption and a 6.5
times smaller maximum throughput. The unrolled implementation is more than
twice as energy-efficient and 3.5 times as fast as the iterated implementation, but at
the cost of a 25 % larger area.

A large disadvantage of Morus is the long initialization and finalization stage.
Message lengths of 20-30 kB are needed before the energy consumption and through-
put reaches the values in Table 6.1. If the aim is to encrypt short messages, the
cipher will be a lot less efficient and fast. For example, a 1 kB message is around
four times as slow and energy inefficient than the values listed in the table.

6.7 Conclusion
All the implementations of Morus and their performance were discussed in this chapter.
Only three implementations were made, but they all offer a relevant trade-off. An
iterated implementation, serialized implementation and unrolled implementation (a
serialization with factor 4 and an unrolling with factor 5).

The serialized implementation has lower speed and worse energy consumption
but the benefit of smaller area. The unrolled implementation offers high speed and
low energy consumption at the cost of higher area. And the iterated implementation
lies in between. The previous chapter analyzed the implementations of Joltik, and
the next will discuss the implementations of Ascon. In Chapter 8, the three ciphers
will be compared with each other.

55

Chapter 7

The Implementation of Ascon

In this chapter, the implementations of Ascon and their performance are discussed.
Ascon is the last of the three ciphers that still needs to be discussed. The implemen-
tation approach was detailed in Chapter 4. The area, energy, and throughput of the
implementations is measured and compared to each other.

In Section 1, the specifications of the Ascon cipher are explained in more depth.
This is important to understand the implementations, which are presented though
Sections 2 to 4. In Section 2, the iterated implementation is described, which is also
the reference implementation that the other implementations modify. In Section 3,
the serialized implementation is described, and in Section 4, the implementations
with multiple unrolled rounds are discussed.

In Section 5, the most important measuring results are shown. The more detailed
results can be found in Appendix C for reference. In Section 6, these results are
discussed.

7.1 The Structure of Ascon

Ascon is based on duplex sponge modes. It has two recommended sets of parameters,
which only differ slightly, and both are implemented in this thesis (see Section
2.4). The main part of Ascon is the permutation that permutes the state after the
initialization, finalization and each data block. In this section the global structure of
Ascon is explained first, followed by a more detailed explanation of the permutation
function.

7.1.1 Ascon-128

A diagram of an encryption with Ascon-128a is shown in Figure 7.1. The AD and
plaintext are XORed with a part of the output of the permutation function, and this
output is then injected in the next iteration of the permutation function. In this way,
confidentiality, authenticity and integrity are achieved at once.

The internal state consists of five 64-bit sub-states for a total size of 320 bit. No
other storage is needed, except optionally to hold the output blocks. This would

57

7. The Implementation of Ascon

Const

Key128

IV128

Permutation

12 rounds

State0

State1

State2

State3

State4

AD128
1

Key128

State3

State4

State2

State1

State0

Permutation

8 rounds

State0

State1

State2

State3

State4

...

AD128
2

State4

State3

State2

State1

State0

0x000..1

Permutation

8 rounds

M128
1

State0

State1

State2

State3

State4

...

M128
2

State4

State3

State2

State1

State0

Key128

Permutation

12 rounds

State0

State1

State2

State3

State4
Tag

Key128

Figure 7.1: High level diagram of Ascon-128a

Name key-size public message tag size Data block Rounds Rounds
number size size begin and end datablock

Ascon − 128a 128 128 128 128 12 8
Ascon − 128 128 128 128 64 12 6

Table 7.1: The sizes of the key, tweak, public number and block number for the
analyzed versions of Ascon

make the communication more convenient (the output would be available for more
than one clock cycle). After the initialization, the AD and plaintext are processed in
128-bit blocks (in Ascon-128a). Ascon-128a and Ascon-128 only differ slightly. The
block size of Ascon-128 is 64 bit instead of 128 bit, and the number of rounds of the
permutation function differs. This is shown in Table 7.1.

The AD and plaintext are padded with a single ’1’ bit followed by zeros, until the
total length is a multiple of the block length. In contrast with Joltik, this padding
happens even if the message would originally fit in full blocks. E.g if the message
length is 256 bit, two blocks will be filled and a third will be added that contains just
’0x8000...’. This will play a role in the implementations because the GMU API does
not support this padding mode, so additional logic will be required in the CipherCore
or kernel.

The structure of the decryption mode is similar. The only difference is that the
ciphertext block is directly inserted in the permutation function, and the output
of the XOR between this block and the state yields the plaintext. So very little
additional logic is needed to make an implementation perform both encryption and
decryption.

While there is an initialization and finalization stage, the overhead of these is not
so big, their equivalent is only about three blocks of data (compared to 24 blocks in
Morus-640). This makes Ascon more suitable for short messages than Morus.

58

7.2. The Iterated Implementation

State0

State1

State2

State3

State4

5-bit
S-box

5-bit
S-box

5-bit
S-box

�

64-bit

�

64-bit

�

64-bit

�

64-bit

�

64-bit

�

63-bit

�

63-bit

�

63-bit

�

63-bit

�

63-bit

�

62-bit

�

62-bit

�

62-bit

�

62-bit

�

62-bit

�

1-bit

�

1-bit

�

1-bit

�

1-bit

�

1-bit

�

2-bit

�

2-bit

�

2-bit

�

2-bit

�

2-bit

�

3-bit

�

3-bit

�

3-bit

�

3-bit

�

3-bit

...

...

...

19>>

28>>

State0�

64-bit

61>>

39>>

State0�

64-bit

1>>

6>>

State0�

64-bit

10>>

17>>

State0�

64-bit

7>>

41>>

State0�

64-bit

Round
Constant

Figure 7.2: One round of the permutation used in the Ascon cipher

7.1.2 The Permutation Function

One round of the permutation of the Ascon cipher is shown in Figure 7.2. A round
does not consist of many steps and should have a moderately short critical path
(two XORs, a S-box and a shift operation). Between 6 and 12 of these rounds are
repeated in one permutation (see Section 7.1.1).

A round consists of three operations on a 320-bit state. First an addition of
roundconstants is done to a small part of the state, followed by 64 5-bit S-boxes, and
in the end a diffusion layer that XORs the state parts with two shifted versions of
themselves. The specifications of the S-box can be found in the submission paper of
Ascon [24].

7.2 The Iterated Implementation

In this section the iterated implementation of Ascon is described. Just as with
the implementations of Joltik and Morus, this implementation is the reference
implementation for the other implementations of Ascon. It lays the base structure
that the other implementations adapt.

The same API is used as in the other two ciphers, and its structure will not be
repeated in this section. It can be found it Section 5.2.1. The developer only has
to implement the CipherCore, which contains the cryptographic cipher. A separate
kernel in this CipherCore contains the permutation function of Ascon, and a small

59

7. The Implementation of Ascon

datapath and control FSM in the CipherCore link the kernel with the GMU API.
First the structure of the CipherCore will be discussed, followed by a description

of the iterated implementation of the kernel. Just as in Joltik and Morus, this kernel
will consume the majority of the energy and area, and it can easily be incorporated
in to other designs (see Section 4.3).

7.2.1 The CipherCore

Ascon
Permutation

Key

Public
Message
Number

Block Data
Input

Start Mode Size Busy

Block Data
Output

Tag

Tag ValidExpected
Tag

Figure 7.3: The datapath of the CipherCore of Ascon

IDLEstart PROCESS

RUN
CIPHER1

RUN
CIPHER2

ke
y

ne
ed

s
up

da
te
|

up
da
te
ke
y

E
lse

bdi proc (start) |
update public message

number

bdi re
ad

y
(n

ew
blo

ck
) |

se
t c
or
re
ct
sig
na
ls

sta
rt
co
re
cip
he
r

E
ls
e

A
sc

o
n

b
u
sy

=
1

Else

A
scon

busy
=

0 |

set correct signals

message finished |
set correct signals

E
ls
e

Figure 7.4: The Finite state machine of the CipherCore of Ascon

60

7.2. The Iterated Implementation

Just as in Morus, the internal state needs to be stored between the permutations.
To keep the majority of the functionality in the kernel, this state is stored inside the
kernel. Some small additional operations need to be done on the state, like XORing
part of the state with the key after initialization. Since the state is stored inside
of the kernel, the logic for this needs to be placed there as well. The kernel has an
external mode port so the CipherCore can tell it which of these special operations
need to be done (more on this in Section 7.2.2).

Because all this functionality is inside the kernel, the logic that is needed outside
of the kernel, to link it with the GMU API, is quite small. The necessary data
inputs are supplied straight from the API to the kernel, and the kernel has four ports
to communicate with the controller. The controller can specify the mode and the
current block length (this is needed during the decryption of the last block), and a
start and busy signal are used for the communication through a handshake signal.

The datapath and the controller used to control the kernel are shown in Figures
7.3 and 7.4. The controller works the same as the controller of the Joltik CipherCore,
and was already explained in that section (Section 5.2.2).

7.2.2 The Kernel

State0
64-bit

State1
64-bit

State2
64-bit

State3
64-bit

State4
64-bit

S-box
Layer

Diffusion
Layer

Round
constant

RoundNr

ConstantIV

Key
128-bit

IV
128-bit

�

64-bit

�

64-bit

�

64-bit

�

64-bit

ConstantAD

ConstantSEP

Regout
128-bit

�

64-bit

�

64-bit

�

128-bit

�

64-bit

�

64-bit

�

128-bit

Data out
128-bit

Data in
128-bit

Truncator

Truncator

�

128-bit

�

128-bit

Blocksize

Figure 7.5: The datapath of the iterated implementation of Ascon

The main part of the kernel is the permutation function. To support all modes of

61

7. The Implementation of Ascon

operation, the hardware implementations also contain additional logic to for example
XOR part of the state with the key (these additional operations are visible in Figure
7.1). There are a fair amount of these additional operations because the special
padding of Ascon is not supported by the GMU API (see Section 7.1.1).

The datapath of the iterated implementation of the kernel is shown in Figure
7.5. Left of the state registers the additional logic is visible, on the bottom right
the logic for one round of the permutation is visible, and the top right shows the
logic to generate the output. The truncators are needed when the last block during
decryption is not a full block. Since it is an iterated implementation, the logic for
one round of the permutation is present and the cipher is executed at the speed of
one round per clock cycle.

The S-box and diffusion layer are implemented in LUTs (see Section 7.1.2 for their
specifics). An additional register is used to hold the output so the communication
with the kernel is more flexible. The kernel for the Ascon-128a version is shown on
the figures. The Ascon-128 version has a smaller block size of only 64 bit, so its
datapath looks slightly different.

The kernel can operate in nine modes, which include initialization, finalization,
associated data, encryption and decryption. But also some additional modes to
handle the special cases when the block needs to be padded. The FSM of the
controller is shown in Figure 7.6. It stays fairly simple, because most of these modes
are only slight modifications of the standard modes.

7.3 The Serialized Implementations

Ascon can be serialized to a high factor without much overhead (see Section 3.2.2
in the literature review). To have a comparable implementation compared to the
serialized implementations of Joltik and Morus, the serialized implementation of
Ascon serializes its S-boxes with a factor 4. This section contains the description of
this implementation.

The main parts of a round of the Ascon permutation, are the S-boxes and linear
diffusion layer. Unfortunately this second part can only be computed after the first
part is done. If a round is serialized, the S-boxes and linear diffusion layer will have
to be calculated in separate stages. In this implementation the S-boxes are serialized
with a factor 4, and the linear diffusion layer is calculated separately for each state
register.

This leads to the fairly complicated structure shown in Figure 7.7. Compared to
the iterated implementation no additional registers are needed, but some additional
multiplexers are. First the S-box layer is executed in four clock cycles. 16 bits from
each 64-bit state are selected, put through the S-boxes and written back to the same
part of the state. Then in five clock cycles, each 64-bit state part is put through the
linear diffusion layer. Three multiplexers select the correct state part and shifting
value.

Now, one round takes nine clock cycles. The logic from Figure 7.7 is fit in the
iterated datapath from Figure 7.5 so all the additional required functionality is still

62

7.3. The Serialized Implementations

IDLE

INITIALIZE

ENCRYPTTAG

Start
&
M
ode

=
2 |

load
key, IV

and
constants

R
oundN

r
�

0

Start
&
(M

ode
=
0
or

4
or

6
or

9) |

U
pdate

state
according

to
m
ode

G
enerate

output
if necessary

R
oundN

r
�

0

St
ar
t
&
M
od
e
=
1
|

xo
r
R
eg
2
&
R
eg
3
w
ith

ke
y

R
ou
nd
N
r�
0

S
tart

&
(M

od
e
=

3
or

5
or

7
or

8) |

U
pdate

state
according

to
m
ode

G
enerate

output
if
necessary

S
ta

rt
=

0

Else |
RoundNr +1

Set sel signals for round

R
oundN

r
=
11 |

xor
R
eg2

&
R
eg3

w
ith

key

Else |
RoundNr +1

Set sel signals for round

RoundN
r =

6 |

RoundNr +1

Set sel signals for round

Else |
RoundNr +1

Set sel signals for round

R
ou
nd
N
r
=
11

|

G
en
er
at
e
ta
g
in
R
eg
ou
t:

(R
eg
3
&
R
eg
4
xo
r’e
d
w
ith

ke
y)

Figure 7.6: The Finite state machine of the iterated implementation of Ascon

63

7. The Implementation of Ascon

State00

State10

State20

State30

�
64

�
16

�
16

�
16

�
16

�
64

�
16

State01

State11

State21

State31

�
64

�
16

�
16

�
16

�
16

�
64

�
16

State02

State12

State22

State32

�
64

�
16

�
16

�
16

�
16

�
64

�
16

Round
Constant

State03

State13

State23

State33

�
64

�
16

�
16

�
16

�
16

�
64

�
16

State04

State14

State24

State34

�
64

�
16

�
16

�
16

�
16

�
64

�
16

16 x 5-bit S-box

28>>

39>>

6>>

17>>

41>>

19>>

61>>

1>>

10>>

7>>

�
64

�
64

�
64

�
64

�
16

�
64

�
16

�
64

�
16

�
64

�
16

�
64

�
16

�
64

�
64

�
64

�
64

�
64

Figure 7.7: The structure of the serialized implementation of Ascon

present. Externally the serialized kernel functions exactly the same as the iterated
kernel, and differs only in the number of clock cycles used for a state update.

7.4 The Unrolled Implementations

Ascon does not have as much potential for unrolling as Morus, but its critical path
is still shorter than that of Joltik. The relative performance of the unrolled Ascon
implementation is expected to lie in between the two other ciphers. In Section 3.2.2
of the literature review, the unrolling performance of Ascon was analyzed on ASIC.
The unrolled implementations performed slightly better energy-wise than the iterated
implementation, but the difference was small. It is possible different results will be
obtained on FPGA.

64

7.5. The Measurements Results

All unrolling factors that still allow the initialization and normal operation to
be executed in a whole number of cycles, are implemented. This is shown in Table
7.2. The implementations are fairly straightforward: the S-box layer, linear diffusion
layer and round constant addition are copied and placed after each other. As many
times, as the unrolling factor that is used.

Name Rounds Rounds unrolling factors
begin and end datablock implemented

Ascon − 128a 12 8 2,4
Ascon − 128 12 6 2,3,6

Table 7.2: All the unrolled implementations for Ascon-128a and Ascon-128

7.5 The Measurements Results

0 2
0

4
0

6
0

8
0

1
00

0

100

200

300

Frequency [MHz]

D
y
n
am

ic
P
ow

er
[m

W
]

iterated
serialized
unrolled2

0

2
0

4
0

60 80 10
0

0

200

400

600

800

1,000

Frequency [MHz]

unrolled6
unrolled3
unrolled2

Figure 7.8: The dynamic power consumption of the Ascon-128 implementations

Four implementations were made of Ascon-128a, and five implementations of
Ascon-128. The same measuring setup as for Joltik and Morus is used, which is
described in Section 4.5. The maximum frequency and area of the implementations
are determined by synthesizing the implementations with a wrapper at different clock
speed constraints. These results are presented in this section, but a more detailed
description can be found in Appendix C.

65

7. The Implementation of Ascon

1
2
8
a
-I
te
ra

te
d

1
2
8
a
-S

e
ri
a
li
z
e
d

1
2
8
a
-U

n
ro

ll
e
d
2

1
2
8
a
-U

n
ro

ll
e
d
4

12
8
-I
te
ra
te
d

12
8-
S
er
ia
li
ze
d

12
8-
U
n
ro
ll
ed

2

12
8-
U
n
ro
ll
ed

3

1
28

-U
n
ro
ll
ed

6

0

0.5

1

1.5

2

E
n
er
g
y
p
er

gi
g
a
b
it

[J
/G

b
]

Encryption
Decryption

Figure 7.9: The energy consumption of the Ascon implementations

The dynamic power consumption of the Ascon-128 implementations is shown
in Figure 7.8. The power consumption of the Ascon-128a implementations have a
similar pattern. The power follows linearly with the frequency. This means that
the energy consumption per data block of one implementation is the same at all
frequencies. When these are averaged over the frequencies, the results in Figure 7.9
are obtained. The energy spent for an encryption and decryption are the same within
the margin of error. This is expected because the operations during encryption and
decryption are almost exactly the same (see Section 7.1.2).

When the energy consumption is compared to the area and maximum throughput
of the implementations, the results shown in Figure 7.10 are obtained. Just as in
Joltik, too much unrolling gives objectively worse results. Any unrolling beyond two
leads to a slower and less energy-efficient implementation. In Ascon-128 an unrolling
of two already gives worse results than the iterated implementation. Serialization
also gives worse results on these two factors.

Energy wise it seems that Ascon-128 performs worse than Ascon-128a, despite
being slightly smaller and having less rounds. The reason is that it only processes 64
bit instead of 128 bit at a time, which halves the performance when the energy is
measured per bit.

Ascon has an initialization and finalization overhead that lays in between that of
Morus and Joltik. This overhead is equivalent to around 3 to 4 data blocks, both in

66

7.6. Interpretation of the Results

0

0.
2

0
.4

0.
6

0
.8 1

1.
2

1
.4

1.
6

1.
8

0

500

1,000

Energy per gigabit [J/Gb]

A
re
a
[s
li
ce
s]

0

0
.2

0.
4

0
.6

0.
8 1

1
.2

1.
4

1
.6

1.
8

0

1

2

3

4

Energy per gigabit [J/Gb]

M
ax

th
ro
u
gh

p
u
t
[G

b
/s
]

Ascon-128
Ascon-128a
iterated
serialized
Unrolled2
Unrolled4
Unrolled3
Unrolled6

Figure 7.10: The area and maximum throughput plotted vs the energy consumption
of the Ascon implementations

throughput and energy consumption.

7.6 Interpretation of the Results

From the measurement results it is visible that Ascon gives bad results when unrolled.
Unrolling with a factor 2 slightly improves the maximal throughput of Ascon-128a,
but at the cost of a larger area and energy consumption. All other unrolling factors
for Ascon-128 or Ascon-128a give worse results on all three analyzed factors compared
to the iterated implementation. These results get exponentially worse when the
unrolling factor is increased. E.g the energy consumption of unrolling Ascon-128a
six times is 3.5 times as worse, compared to unrolling it three times.

On ASIC the energy consumption improved when unrolling Ascon, although only

67

7. The Implementation of Ascon

by a small amount (see Section 3.2.2 in the literature review). Because the logic is
implemented in LUTs and connected through a routing matrix, this leads to a vastly
longer critical path on the FPGA. So, the power consumption due to glitches has a
bigger effect than in the ASIC implementations. This long critical path also leads to
a lower maximum frequency, which causes a lower maximum throughput, despite
that processing a block takes less clock cycles.

Serialization does not offer any benefits either. The serialized implementations
have a higher energy consumption, larger area and lower maximal throughput than
the iterated implementations. The area is 13% and 20% higher for respectively
Ascon-128 and Ascon-128a. In the ASIC implementations (see Section 3.2.2), the
area of serialized implementation amounted only to 35% of that of the iterated
implementation. This large difference with the results on FPGA is due to the higher
serialization factor. The implementation on ASIC serialized the S-box with a factor
64, instead of 4, and fully serialized the linear diffusion layer as well. One round
took 512 cycles in their implementation.

It seems the overhead of the serialization in the FPGA implementation, outweighs
the benefits of the reduced logic. If the S-boxes would be serialized with a higher
factor, shift registers could be used to store the state. This would eliminate the
multiplexers after the state registers in Figure 7.7, and lead to a reduction of the
amount of registers. This setup could give better area results than the one used.

Implementation Area LUTs Registers Energy max throughput
(Slices) (J/Gb) (Gb/s)

128a-Iterated 394 1427 495 0.054 3.041
128a-Unrolled2 703 2341 495 0.119 3.650

128-Iterated 420 1297 474 0.073 2.359

Table 7.3: The measurement results for the best Ascon implementations

In Table 7.3, the area, maximum throughput and energy consumption of the
implementations that offer relevant trade-offs are listed. Only the unrolling with
factor 2 of Ascon-128a offers any benefit over the iterated implementation. A small
20% improvement in maximal throughput at the cost of 78% more area and a 2.2
times worse energy consumption.

The initialization and finalization overhead are quite small. A message of 1.5-3.5
kB will already reach 90% of the speed and energy consumption values in Table 7.3.
This overhead in Ascon will be compared to that of Joltik and Morus in the next
chapter, along with all the other results.

7.7 Conclusion

All the implementations of Ascon and their performance were discussed in this
chapter. Four implementations were made of Ascon-128a, and five implementations

68

7.7. Conclusion

were made of Ascon-128. One iterated and serialized implementation for each of
these versions, and respectively two and three unrolled implementations.

Almost all the serialized and unrolled implementations gave worse results in area,
energy consumption and maximum throughput than the iterated implementations.
Only the unrolled implementation with factor two of Ascon-128a gave a slightly
higher throughput. Some possible explanations for these results were discussed.

All ciphers and their implementations have now been presented, measured and
discussed. In the next chapter the ciphers will be compared with each other, and
the claims of their authors will be evaluated. The strengths and weaknesses of each
cipher will be identified as well.

69

Chapter 8

Comparison of the Ciphers

In the past three chapters, the implementations of the three ciphers have been treated.
They were presented, measured, and their results were discussed. In this chapter,
the results from the three ciphers are combined. It is important to keep in mind
that all measurements are done on a Spartan 6 FPGA. The same conclusions can
not necessarily be applied to hardware implementations on ASICs.

In Section 1, conclusions are formed about how the ciphers performed on energy,
area and speed. And Section 2 analyzes the effectiveness of the optimizations.
Certain optimizations gave better results than others, depending on the type of
cipher. This could be useful information during the optimization of other ciphers.
The exact measurement results of the implementations can be found in Appendix A,
B and C.

8.1 The Performance of the Ciphers

In this section, the ciphers are compared on the three important factors of energy, area
and speed. In low-energy applications like wireless sensors, the energy consumption
and chip area are the most important design factors. Those applications often do not
require continuous transfer of data, making speed less of an issue. This trade-off is
discussed in the first part of this section. The second part analyzes the more classical
trade-off between area and speed. The claims of the authors of the ciphers in regard
to these two factors are discussed.

8.1.1 The Trade-off Between Energy and Area

Speed is not an issue in many applications, but energy efficiency and chip area is. To
identify the best candidates for such applications, the implementations of each cipher
that offer some benefit on these two criteria are compared. This is shown in Figure
8.1. It is important to note that Joltik − 64 − 64, which uses Joltik-BC-128, only
offers 64 bit of confidentiality. The rest of the ciphers offer 128 bit of confidentiality.
If the application requires 128 bit, the light green results in Figures 8.1 and 8.2
should be ignored.

71

8. Comparison of the Ciphers

0

5
·1
0
−
2

0
.1

0.
15 0.
2

0.
25 0.
3

0
.3
5

0.
4

0
.4
5

0.
5

0

200

400

600

Energy per gigabit [J/Gb]

A
re
a
[s
li
ce
s]

Joltik-BC-128
Serialized
Iterated

Joltik-BC-192
Iterated

Morus-640
Serialized
Unrolled 5
Iterated

Ascon-128a
Iterated

Figure 8.1: Energy versus area comparison of the best implementations of Joltik,
Morus and Ascon

0 5

10 15 20

0.000

0.200

0.400

Message Length [Kb]

E
n
er
gy

p
er

gi
ga

b
it

[J
/G

b
]

0

0.
5 1

1.
5 2

0.000

0.200

0.400

Message Length [Kb]

E
n
er
gy

p
er

gi
ga

b
it

[J
/G

b
]

Joltik-BC-128
Joltik-BC-196
Morus-640
Ascon-128a

Figure 8.2: Energy efficiency in function of the message length for the most efficient
implementations of Joltik, Morus and Ascon

It is visible that all ciphers have their benefits. Joltik is the smallest and least
efficient cipher. Morus is the largest and most energy efficient cipher, and Ascon
lies in between Joltik and Morus. The Joltik-BC-128 kernel performs better than
Joltik-BC-192, but offers a lower confidentiality security.

Because of the overhead necessary for the initialization or finalization of the
ciphers, the energy consumption per bit also depends on the length of a message.
The values in Figure 8.1 apply only in the case where the message is sufficiently long.
In Figure 8.2 the energy consumption for the most efficient implementations of each
cipher are shown in function of the message length. Ascon-128a is more efficient
than Morus-640 if the message is under five data blocks long (0.64 Kb). Despite
their really short overhead, the Joltik implementations never beat Morus or Ascon
in energy efficiency.

72

8.1. The Performance of the Ciphers

8.1.2 The Trade-off Between Speed and Area

In Section 2.1, it was determined what ciphers would be analyzed in the thesis. The
focus of the thesis was on ciphers with potential to be used in low-energy applications.
Because very little research and claims were made about the energy consumption of
the ciphers in the competition, a large part of the actual decision was based on the
claimed light-weight and complexity of the ciphers in hardware. In Figure 8.3 the
speed and area of the cipher implementations are compared.

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

10−2

10−1

100

101

Area [slices]

M
ax

th
ro
u
gh

p
u
t
[G

b
/s
]

Joltik-BC-128
Serialized
Iterated

Unrolled 2
Joltik-BC-192

Iterated
Unrolled 2
Morus-640
Serialized
Iterated

Unrolled 5
Ascon-128a
Iterated

Unrolled 2

Figure 8.3: The maximum throughput in function of the area for relevant implemen-
tations of Joltik, Morus and Ascon

In the submission paper of Joltik the authors claimed that "Joltik has a low
area footprint" [21]. This is confirmed in the results. Joltik is by far the smallest
cipher of the three. Only 156 slices are necessary for the serialized implementation
of Joltik-BC-128. It fits easily on the smallest Spartan 6 FPGA, which has only 600
slices [55], with plenty of slices left over for some small additional logic. Joltik will
fit on older and cheaper models as well.

The authors of Morus claimed that Morus is designed to be fast in hardware [23].
This is also confirmed in the results. The fully unrolled implementation can reach
high speeds of 16 Gb/s on the Spartan 6. Several copies of the implementation can
also be placed on the same chip to reach even higher speeds by encrypting multiple
messages at once.

The authors of Ascon wrote that its main features are that it is "lightweight in
hardware, while still being reasonable fast". As well as allow efficient implementation
of side-channel resistance features [24]. The side-channel resistance was not analyzed
in this thesis, but the trade-off between its area and speed is visible in the results.
The area and the speed of the iterated implementation of Ascon-128a lies in between
the areas and speed of the Joltik and Morus implementations.

73

8. Comparison of the Ciphers

8.2 Global Optimizations on the Ciphers

Several implementations have been made of the three ciphers. They differ from the
iterated implementations on an architectural level. They unroll or serialize multiple
rounds of the ciphers. No pipelining or parallelization has been tried, which is
something that could potentially be done in further research.

In this section, the potential of these improvements is discussed. The results of the
improved implementations are compared to the respective iterated implementations
of the ciphers. Possible causes of the results are identified, and some generalized
conclusions are made. In the first part of this section, the potential of the unrolling of
round based ciphers is discussed, and in the second part the serialization is discussed.

8.2.1 Unrolling

In Figure 8.4, the relative critical path delay and relative energy consumption of
all the unrolled implementations are shown. Point (1, 1) represents the iterated
implementations. It is important to note that less cycles are needed per block in
the unrolled implementations, and that this is already taken in to account in the
relative energy consumption. The relative power consumption is a lot higher than
the relative energy consumption. The numbers above the data points represent the
unrolling factor of that implementation.

0 1 2 3 4 5 6

0

5

10

15

20

25

1 2

4

8

2

4

8

5

2

4

2
3

6

Critical path delay

E
n
er
gy

co
n
su
m
p
ti
on

Joltik-BC-128
Joltik-BC-196
Morus-640
Ascon-128a
Ascon-128

Figure 8.4: The relative change in critical path delay versus the relative change in
the energy consumption of the unrolled implementations

It is visible that Morus-640 is the only cipher that responded well to unrolling.
The energy consumption approximately halved, and the critical path only got about
1.5 times longer when a round was unrolled five times. For the other two ciphers the
results got worse for each higher unrolling factor. A very short critical path seems to

74

8.2. Global Optimizations on the Ciphers

be a necessity to achieve a better energy performance through unrolling on FPGA.
Once the critical path becomes too long, the energy consumption rises drastically.

When an unrolled implementation of Ascon is made on ASIC, the pattern is
different (these ASIC results are discussed in Section 3.2.2 of the literature review).
The energy consumption slightly dropped with each unrolling factor (they unrolled
up to a factor of six). While even higher factors will probably eventually also worsen
the energy consumption on ASIC, this turning point seems to be further away than
in the FPGA implementations.

0 1 2 3 4 5 6 7 8

0

2

4

6

8

Unrolling factor

A
re
a

Joltik-BC-128
Joltik-BC-196
Morus-640
Ascon-128a
Ascon-128

Ascon-128-ASIC

Figure 8.5: The relative area increase versus the unrolling factor of the unrolled
implementations

In Figure 8.5, the relative area increase is compared to the unrolling factor.
The ASIC measurements for Ascon-128 are also included [37]. The results here do
correspond to the ASIC results. It is again visible that Morus responds very well to
unrolling. The area only increases 25% when its rounds are unrolled with a factor
five. For the other two ciphers the area increases faster. At first it increases slower
than the unrolling factor, until a certain point where the area increases faster than
the unrolling factor. The implementation of Joltik-BC-196 with an unrolling factor
of 8 is more than twice as big than the implementation with an unrolling factor of 4.

This rapid increase of the area is not a logical result, since doubling the logic
should only at worst double the area (and not increase it even more). This rapid
increase is not due to overfilling of the FPGA, since less than 20% of the area was
in use. A reason could be that the synthesis tool has more trouble optimizing the
implementation because it is bigger. The synthesis settings for the implementations
were more or less left in the standard mode, so perhaps better settings could result
in more logical results.

75

8. Comparison of the Ciphers

8.2.2 Serialization

The area reduction from serialization is highly dependent on the implementation.
The structure of an iterated implementation is fairly straightforward because it just
uses the structure of a round. In serialized implementations several structures can be
used, sometimes with extra logic or registers for temporary values. Because only a
part of the state-bits are needed each round, more efficient storage than just registers
can be used (such as ram).

The magnitude in which a cipher benefits from serialization is further dependent
on the structure of its rounds. In some ciphers almost no extra register and logic is
needed to serialize them, and some ciphers need extra logic and registers even for
small amounts of serialization. Sometimes, even if the number of LUTs and register
that are used, are reduced, it does not automatically lead to a reduction of the
number of slices. This was the case in one of the serialized implementations of Joltik
(see Section 5.6).

Not enough focus of this thesis was on the serialized implementations to make
any big conclusions about the serialization of the ciphers. The individual results for
the serialized implementations are discussed in the chapter of each respective cipher.

8.3 Conclusion

This chapter combined the performance results of the three ciphers. For low-
energy applications like wireless sensors, the area and energy-efficiency are the
most important criteria. In classical applications mostly the speed and area are
important. The used architectural optimizations were examined, and their benefits
for particular ciphers generalized.

Each cipher has its advantages for low-energy applications. Joltik is the smallest
but least energy-efficient cipher. Morus is the largest and most efficient cipher. Ascon
lies in between. In the classical comparison between speed and area, the results are
similar. Joltik is the smallest and slowest cipher, Morus the largest and fastest, and
Ascon lies in between. This corresponds to the claims the respective authors made
in the submission paper of their cipher.

The impact of unrolling was very positive for Morus because of its very short
critical path. However it had a negative effect on the energy consumption and speed
of the two ciphers with a longer critical path (Joltik and Ascon). A longer critical
path leads to more glitches, which have a big effect on the energy consumption. The
results of the Ascon implementations were compared with ASIC implementations of
Ascon, and it was found that the energy rise due to a too long critical path did not
yet happen there at an unrolling factor of six.

Area-wise, the area rises slowly with the unrolling factor. A doubling of the
round logic, does not lead to a doubling of area until a certain point. After which
the area does rise faster than then unrolling factor. A possible reason is that the
synthesis tool has more trouble optimizing when the implementation is that big, and
better synthesis settings could lead to better results.

76

8.3. Conclusion

Not enough focus was on serialization to make meaningful global conclusions.
The results are highly dependent on the structure of the ciphers themselves, and the
way the serialization is implemented. The individual serialization for each cipher is
discussed in the implementation chapter of each respective cipher.

77

Chapter 9

Conclusion

In the introduction of this thesis, the need for small, robust and energy-efficient
encryption was stated. This requires ciphers that are small, robust and energy
efficient. Three diverse authenticated ciphers from the CAESAR competition were
chosen and several optimized implementations of them were made for FPGA. These
are ciphers that were designed to be light-weight ciphers in hardware. The aim was
to research the following three elements:

1. The trade-off between the energy consumption, area and speed for each of the
three ciphers

2. The general performance of each cipher

3. A possible generalization of the results, to find effective optimization strategies
for certain type of ciphers

The most important empirical findings and conclusions in regard to these three
questions are described in Section 1. Section 2 discusses the limitations of the
research. Finally, Section 3 places the thesis in existing research and discusses
potential further research.

9.1 Empirical Findings

The specifics of the implementations and their performance can be found in the
respective chapters of the ciphers. Chapter 5 for Joltik, Chapter 6 for Morus and
Chapter 7 for Ascon. The chapters also include a detailed description of the ciphers
themselves. In Chapter 8, the ciphers are compared and cross-cipher conclusions are
made. This section will synthesize the findings to answer the three main objectives
of the research.

Only the kernel of the implementations was measured. The kernel is the core of
the implementation that contains the most active and important part of the cipher,
without any overhead of the external interface. It consumes the majority of energy
and area, and can be implemented in other designs if different external communication

79

9. Conclusion

is required. The starting point of each cipher was an iterated implementation, which
was then serialized and unrolled in various degrees in the other implementations.

9.1.1 The Trade-off between Energy, Speed and Area for Joltik,
Morus and Ascon

Unrolling Joltik beyond a factor two, did not yield any benefits in either speed, area
or energy efficiency. The critical path became too long, which caused the power
consumption to rise too much to save any energy through the execution in less clock
cycles. When Joltik was unrolled with a factor two, it caused the energy consumption
and area to rise, but the maximum throughput was also increased.

The serialized implementation of Joltik had a slightly lower area at the cost of
a double energy consumption and a four times as low maximum throughput. A
serialized implementation where the registers were replaced with distributed ram
further reduced the LUTs and registers needed, but this was not translated in to a
lower number of FPGA slices. The smaller Joltik-BC-128 responded better to the
optimizations than the larger Joltik-BC-196.

Fully unrolling all five rounds of Morus gave good results. The energy consumption
halved and the maximum speed increased four times, at the cost of only a 25% larger
area. The serialized implementation reduced the area by 25%, but at the cost of 3.5
times the energy and a 6.5 times slower maximum speed. All three implementations
of Morus had their benefits, depending on how large of a priority the smaller area is.

Ascon responded a bit worse to unrolling and serializing than Joltik. An unrolling
with factor two still gave a slight benefit in maximum speed, but at the cost of an
almost double energy consumption and area. The serialization did not improve the
area. The serialization serialized the S-box layer of Ascon by a factor four. It is
possible to serialize Ascon with a higher factor without creating much extra overhead.
It would also give the opportunity to use shift registers to more efficiently store the
state. It is expected that this would cause an area reduction, as was the case with a
similar ASIC implementation [37]. Ascon-128a performed better than Ascon-128.

9.1.2 General Performance of the Ciphers

For applications constrained by low energy and area, each of the ciphers offered some
benefit. Joltik was the smallest and least efficient cipher. Morus was the largest and
most efficient cipher. And Ascon lied between those two, although for short messages
of under 0.5 Kb Ascon was more efficient than Morus.

A similar result was obtained when the classical trade-off between area and speed
was analyzed. Joltik was the smallest and slowest cipher, Morus the largest and
fastest cipher, and Ascon lied in between. This corresponded to the claims of the
respective authors of the ciphers. Joltik was claimed to be very light-weight in
hardware, Morus to be fast, and Ascon to offer a trade-off between a small area and
a reasonable speed.

80

9.2. Limitations

9.1.3 Effective Optimization Strategies

The response of the ciphers to unrolling seemed to be very dependent on their
internal structure. A short critical path equaled a very good response to unrolling
(as was the case with Morus). A longer critical path quickly led to a higher energy
consumption, that rose higher the more the cipher was unrolled. When unrolled
ASIC implementations [37] were compared with those on FPGA, it seemed that this
critical path could be a lot longer on ASIC before the unrolling had a negative effect
on the energy consumption.

Area-wise unrolling led to a slow increase in area, which was less steep in the
Morus cipher because of the short critical path. The FPGA implementations followed
a similar pattern in area as the unrolled ASIC implementations. Only at high
unrolling factors the area rose faster than would be expected (double the logic lead
to more than double the area). This could be due to less optimal settings of the
synthesis tool for larger designs.

Global conclusions about the response of ciphers to serialization were hard to
make. The benefits of serialization depended highly on how this serialization was
implemented. Not enough of those implementations have been made in this thesis
to draw conclusions. The implementations that have been made do not show much
consistency in their results.

9.2 Limitations

The study analyzed the hardware performance of three ciphers that showed potential
to be used in energy constrained applications. As a consequence of the variability of
hardware and hardware implementations, some limitations were encountered.

Results can differ greatly on different hardware, especially between ASIC and
FPGA large differences exist. Comparing the results of this thesis to implementations
on other platforms, or even to the same platform with other settings and versions of
synthesis software will not be so accurate.

The implementations themselves are optimized, but there is always some room
for improvement. Especially in the synthesis software more effective settings could be
used for better results. Not many settings have been tried, and no extra constraints
aside from clock, input and output constraints have been supplied to improve the
results.

However special care was taken that all implementations followed the same
structure. The same hardware platform and environment factors were used dur-
ing measurement. The same synthesis software and settings were used. And the
optimization strategy was also the same for all the implementations. So for their
comparison in this thesis, most of those influencing factors have been eliminated and
the comparisons can be expected to be accurate.

81

9. Conclusion

9.3 Further Direction of Research
The energy and area consumption of hardware implementations of three ciphers from
the CAESAR competition were analyzed in this thesis. Since low-energy applications
are becoming more and more common, energy efficiency in hardware is an important
factor in the evaluation of a cipher. Unfortunately relatively little research is available
about the energy efficiency of cryptographic ciphers in hardware, and there are many
obstacles in comparing implementations on different platforms.

Not all possible implementations of the ciphers were explored in this thesis.
Mainly parallelization and pipelining might yield interesting results. There are also
other hardware oriented ciphers in the CAESAR competition, whose energy usage
can be analyzed as well. There is a lot of potential work left in this area.

As a final note I would like to conclude that all three ciphers are worthy candidates
in the second round of the CAESAR competition. They have their own strengths
and weaknesses when implemented on FPGA, and appropriate applications can be
found for all three ciphers.

82

Appendices

83

Appendix A

Measurement details for the
Joltik implementations

This appendix contains the detailed measurement results of the Joltik implementa-
tions.

The energy measurements for the Joltik-BC-192 and Joltik-BC-128 implementa-
tions are listed in Tables A.1 and A.2 respectively. Most columns are self-explanatory.
The real power column is the dynamic power weighted by the activity of the measuring
setup. The measuring setup waits 3 cycles between each subsequent encryption or
decryption. Thus the real dynamic power that the design uses is higher than the
measured one. The proportion of these wasted cycles was determined by simulation
in Modelsim.

The area was measured by a different setup. Joltik-BC was wrapped in a a
simple serial-in, parallel-out wrapper and synthesized for the same Spartan 6 that
was used for the measurements (xc6slx45 csg324-3). The clock was constrained, and
the synthetisation and implementation steps were repeated multiple times until the
maximum clock speed was attained.

These results are shown in Tables A.3 and A.4. The real register column lists
the synthethised registers minus the registers used for the wrapper. So it contains
the real number of registers used in the implementations. The average energy is the
average of the 100 and 50 MHz measurements (since these are the most accurate, as
explained in Section 5.5), which is then averaged over encryption and decryption.

To determine the energy consumption, information about the number of cycles
that the implementations use to encrypt or decrypt a block are needed. This
information also makes it possible to calculate the time and energy that the message
overhead requires (in the case of Joltik, it consists of the single encryption at the
end to generate the tag). These values are displayed in Tables A.5 and A.6. This
overhead is expressed relative to the average time and energy needed to process a
single block of data (64-bit in Joltik).

85

A. Measurement details for the Joltik implementations

Version Frequency Mode Avg. Static Avg. Total Avg. Dynamic Real Energy per Energy per
(Mhz) Power (Watt) Power (Watt) Power (Watt) Power (Watt) block (J/64-bit) gigabit (J/Gb)

Iterated 100 Encrypt 0.190 0.257 0.067 0.073 2.48E-08 0.387
Iterated 50 Encrypt 0.188 0.222 0.034 0.037 2.52E-08 0.393
Iterated 25 Encrypt 0.186 0.205 0.019 0.021 2.81E-08 0.439
Iterated 100 Decrypt 0.190 0.246 0.056 0.061 2.07E-08 0.324
Iterated 50 Decrypt 0.188 0.216 0.028 0.030 2.07E-08 0.324
Iterated 25 Decrypt 0.186 0.203 0.017 0.019 2.52E-08 0.393

Serialized4 100 Encrypt 0.190 0.228 0.038 0.039 5.17E-08 0.808
Serialized4 50 Encrypt 0.189 0.208 0.019 0.019 5.17E-08 0.807
Serialized4 25 Encrypt 0.187 0.199 0.012 0.013 6.53E-08 1.020
Serialized4 100 Decrypt 0.190 0.226 0.036 0.037 4.90E-08 0.765
Serialized4 50 Decrypt 0.189 0.209 0.020 0.020 5.44E-08 0.850
Serialized4 25 Decrypt 0.187 0.197 0.010 0.010 5.44E-08 0.850

Serialized4_ram 100 Encrypt 0.191 0.238 0.047 0.048 6.77E-08 1.058
Serialized4_ram 50 Encrypt 0.189 0.213 0.024 0.025 6.91E-08 1.080
Serialized4_ram 25 Encrypt 0.187 0.200 0.013 0.013 7.49E-08 1.170
Serialized4_ram 100 Decrypt 0.191 0.237 0.046 0.047 6.81E-08 1.064
Serialized4_ram 50 Decrypt 0.189 0.211 0.022 0.022 6.51E-08 1.018
Serialized4_ram 25 Decrypt 0.187 0.199 0.012 0.012 7.10E-08 1.110

Unrolled2 100 Encrypt 0.203 0.381 0.178 0.209 3.56E-08 0.556
Unrolled2 50 Encrypt 0.201 0.289 0.088 0.104 3.52E-08 0.550
Unrolled2 25 Encrypt 0.198 0.242 0.044 0.052 3.52E-08 0.550
Unrolled2 100 Decrypt 0.203 0.378 0.175 0.206 3.50E-08 0.547
Unrolled2 50 Decrypt 0.201 0.289 0.088 0.104 3.52E-08 0.550
Unrolled2 25 Decrypt 0.198 0.243 0.045 0.053 3.60E-08 0.563

Unrolled4 50 Encrypt 0.199 0.653 0.454 0.605 1.09E-07 1.703
Unrolled4 25 Encrypt 0.191 0.439 0.248 0.331 1.19E-07 1.860
Unrolled4 50 Decrypt 0.199 0.665 0.466 0.621 1.12E-07 1.748
Unrolled4 25 Decrypt 0.191 0.438 0.247 0.329 1.19E-07 1.853

Unrolled8 25 Encrypt 0.206 1.171 0.965 1.544 3.09E-07 4.825
Unrolled8 25 Decrypt 0.206 1.224 1.018 1.629 3.26E-07 5.090

Table A.1: Measurement results for the Joltik-BC-192 implementations on a Digilent
ADEPT setup

86

Version Frequency Mode Avg. Static Avg. Total Avg. Dynamic Real Energy per Energy per
(Mhz) Power (Watt) Power (Watt) Power (Watt) Power (Watt) block (J/64-bit) gigabit (J/Gb)

Iterated 100 Encrypt 0.201 0.256 0.055 0.061 1.60E-08 0.249
Iterated 50 Encrypt 0.196 0.227 0.031 0.035 1.80E-08 0.281
Iterated 25 Encrypt 0.195 0.210 0.015 0.017 1.74E-08 0.272
Iterated 100 Decrypt 0.201 0.249 0.048 0.054 1.39E-08 0.218
Iterated 50 Decrypt 0.196 0.222 0.026 0.029 1.51E-08 0.236
Iterated 25 Decrypt 0.195 0.207 0.012 0.013 1.39E-08 0.218

Serialized4 100 Encrypt 0.182 0.212 0.030 0.031 3.12E-08 0.488
Serialized4 50 Encrypt 0.183 0.199 0.016 0.016 3.33E-08 0.520
Serialized4 25 Encrypt 0.182 0.190 0.008 0.008 3.33E-08 0.520
Serialized4 100 Decrypt 0.182 0.213 0.031 0.032 3.22E-08 0.504
Serialized4 50 Decrypt 0.183 0.198 0.015 0.015 3.12E-08 0.488
Serialized4 25 Decrypt 0.182 0.190 0.008 0.008 3.33E-08 0.520

Serialized4_ram 100 Encrypt 0.186 0.222 0.036 0.037 4.03E-08 0.630
Serialized4_ram 50 Encrypt 0.185 0.206 0.021 0.022 4.70E-08 0.735
Serialized4_ram 25 Encrypt 0.183 0.194 0.011 0.011 4.93E-08 0.770
Serialized4_ram 100 Decrypt 0.186 0.220 0.034 0.035 3.94E-08 0.616
Serialized4_ram 50 Decrypt 0.185 0.204 0.019 0.020 4.41E-08 0.689
Serialized4_ram 25 Decrypt 0.183 0.193 0.010 0.010 4.64E-08 0.725

Unrolled2 100 Encrypt 0.188 0.309 0.121 0.149 1.94E-08 0.303
Unrolled2 50 Encrypt 0.184 0.252 0.068 0.084 2.18E-08 0.340
Unrolled2 25 Encrypt 0.183 0.217 0.034 0.042 2.18E-08 0.340
Unrolled2 100 Decrypt 0.188 0.319 0.131 0.161 2.10E-08 0.328
Unrolled2 50 Decrypt 0.184 0.257 0.073 0.090 2.34E-08 0.365
Unrolled2 25 Decrypt 0.183 0.218 0.035 0.043 2.24E-08 0.350

Unrolled4 50 Encrypt 0.188 0.487 0.299 0.427 5.98E-08 0.934
Unrolled4 25 Encrypt 0.182 0.330 0.148 0.211 5.92E-08 0.925
Unrolled4 50 Decrypt 0.188 0.521 0.333 0.476 6.66E-08 1.041
Unrolled4 25 Decrypt 0.182 0.346 0.164 0.234 6.56E-08 1.025

Unrolled8 25 Encrypt 0.186 1.042 0.856 1.498 2.40E-07 3.745
Unrolled8 25 Decrypt 0.192 1.120 0.928 1.624 2.60E-07 4.060

Table A.2: Measurement results for the Joltik-BC-128 implementations on a Digilent
ADEPT setup

Version Max Frequency Slices LUT’s Register Real registers Max throughput Energy per
(Mhz) (Gb/s) gigabit (J/Gb)

Iterated 154 213 683 591 267 0.290 0.357
Serialized 135 215 685 653 329 0.065 0.808
SerializedRam 123 196 604 445 121 0.056 1.055
Unrolled2 101 399 1359 596 272 0.380 0.551
Unrolled4 58 723 2592 598 274 0.415 1.791
Unrolled8 25 1690 5384 636 312 0.320 4.958

Table A.3: Synthesizing with wrapper on xc6slx45 csg324-3 for the Joltik-BC-192 imple-
mentations

87

A. Measurement details for the Joltik implementations

Version Max Frequency Slices LUT’s Register Real registers Max throughput Energy per
(Mhz) (Gb/s) gigabit (J/Gb)

Iterated 141 180 555 464 205 0.346 0.246
Serialized 122 156 457 513 254 0.077 0.500
SerializedRam 115 170 444 368 109 0.068 0.668
Unrolled2 105 245 863 460 201 0.516 0.334
Unrolled4 56 373 1382 459 200 0.508 0.981
Unrolled8 28 901 2503 458 199 0.445 3.903

Table A.4: Synthesizing with wrapper on xc6slx45 csg324-3 for the Joltik-BC-128 imple-
mentations

Version Cycles for Cycles for Cycles for Time ratio Energy ratio
encryption decryption message overhead overhead/message block overhead/message block

Iterated 34 34 31 1.00 1.10
Serialized 133 133 133 1.00 1.00
SerializedRam 141 145 141 0.99 1.01
Unrolled2 17 17 17 1.00 1.00
Unrolled4 9 9 9 1.00 1.00
Unrolled8 5 5 5 1.00 0.97

Table A.5: The amount of clock cycles the operations take in the Joltik-BC-196 implemen-
tations

Version Cycles for Cycles for Cycles for Time ratio Energy ratio
encryption decryption message overhead overhead/message block overhead/message block

Iterated 26 26 26 1.00 1.08
Serialized 101 101 101 1.00 1.00
SerializedRam 109 113 109 0.99 1.01
Unrolled2 13 13 13 1.00 1.00
Unrolled4 7 7 7 1.00 0.96
Unrolled8 4 4 4 1.00 0.96

Table A.6: The amount of clock cycles the operations take in the Joltik-BC-128 implemen-
tations

88

Appendix B

Measurement details for the
Morus implementations

This appendix contains the detailed the measurement results of the Morus imple-
mentations.

The energy measurements for Morus-640 implementations are listed in Table
B.1. The columns have the same meaning as in the Joltik-BC measurements (see
Appendix A). An extra measurement is done in Morus, the empty measurement,
which measures only the initialization and finalization stages. The energy per block
value of these measurements is the total energy spent during one initialization and
finalization.

The results of the area measurements are displayed in Table B.2. The same setup
was used as in Joltik, and the columns have the same meaning (see Appendix A).
The clock cycles needed to encrypt a block of data, and the relative overhead of the
initialization and finalization are listed in Table B.3.

89

B. Measurement details for the Morus implementations

Version Frequency Mode Avg. Static Avg. Total Avg. Dynamic Real Energy per Energy per
(Mhz) Power (Watt) Power (Watt) Power (Watt) Power (Watt) block (J/64-bit) gigabit (J/Gb)

Iterated 100 Encr 0.202 0.285 0.083 0.116 5.81E-09 0.0454
Iterated 50 Encr 0.195 0.235 0.040 0.056 5.60E-09 0.0438
Iterated 25 Encr 0.192 0.214 0.022 0.031 6.16E-09 0.0481
Iterated 100 Decr 0.202 0.288 0.086 0.120 6.02E-09 0.0470
Iterated 50 Decr 0.195 0.236 0.041 0.057 5.74E-09 0.0448
Iterated 25 Decr 0.192 0.215 0.023 0.032 6.44E-09 0.0503
Iterated 100 Empty 0.202 0.300 0.098 0.104 1.27E-07 n.a.
Iterated 50 Empty 0.195 0.243 0.048 0.051 1.24E-07 n.a.
Iterated 25 Empty 0.192 0.219 0.027 0.029 1.40E-07 n.a.

Serialized4 100 Encr 0.197 0.271 0.074 0.083 2.00E-08 0.1561
Serialized4 50 Encr 0.191 0.229 0.038 0.043 2.05E-08 0.1603
Serialized4 25 Encr 0.189 0.209 0.020 0.023 2.16E-08 0.1688
Serialized4 100 Decr 0.197 0.273 0.076 0.086 2.05E-08 0.1603
Serialized4 50 Decr 0.191 0.229 0.038 0.043 2.05E-08 0.1603
Serialized4 25 Decr 0.189 0.209 0.020 0.023 2.16E-08 0.1688
Serialized4 100 Empty 0.197 0.280 0.083 0.084 4.18E-07 n.a.
Serialized4 50 Empty 0.191 0.233 0.042 0.043 4.23E-07 n.a.
Serialized4 25 Empty 0.189 0.211 0.022 0.022 4.43E-07 n.a.

Unrolled5 100 Encr 0.209 0.279 0.070 0.280 2.80E-09 0.0219
Unrolled5 50 Encr 0.203 0.237 0.034 0.136 2.72E-09 0.0213
Unrolled5 25 Encr 0.200 0.217 0.017 0.068 2.72E-09 0.0213
Unrolled5 100 Decr 0.209 0.277 0.068 0.272 2.72E-09 0.0213
Unrolled5 50 Decr 0.203 0.236 0.033 0.132 2.64E-09 0.0206
Unrolled5 25 Decr 0.200 0.216 0.016 0.064 2.56E-09 0.0200
Unrolled5 100 Empty 0.209 0.334 0.125 0.159 4.47E-08 n.a.
Unrolled5 50 Empty 0.203 0.265 0.062 0.079 4.43E-08 n.a.
Unrolled5 25 Empty 0.200 0.231 0.031 0.040 4.43E-08 n.a.

Table B.1: Measurement results for the Morus-640 implementations on a Digilent ADEPT
setup

Version Max Frequency Slices LUT’s Register Real registers Max throughput Energy per
(Mhz) (Gb/s) gigabit (J/Gb)

Iterated 190 616 1965 1593 944 4.861 0.0466
Serialized 142 468 1407 1604 955 0.756 0.1624
Unrolled5 128 765 2618 1594 945 16.322 0.0210

Table B.2: Synthesizing with wrapper on xc6slx45 csg324-3 for the Morus-640 implementa-
tions

Version Cycles for Cycles for Cycles for Time ratio Energy ratio
encryption decryption message overhead overhead/message block overhead/message block

Iterated 5 5 122 24.4 22.3
Serialized 24 24 496 20.7 20.7
Unrolled5 1 1 28 28.0 16.2

Table B.3: The amount of clock cycles the operations take in the Morus-640 implementations

90

Appendix C

Measurement details for the
Ascon implementations

This appendix contains the detailed the measurement results of the Ascon implemen-
tations.

The energy measurements for the Ascon-128a and Ascon-128 implementations
are listed in Tables C.1 and C.2 respectively. The columns have the same meaning
as in the Morus-640 measurements (see Appendix B).

The results of the area measurements are displayed in Tables C.3 and C.4. The
same setup was used as in Joltik, and the columns have the same meaning (see
Appendix A). The clock cycles needed to encrypt a block of data, and the relative
overhead of the initialization and finalization stages are listen in Tables C.5 and C.6.

91

C. Measurement details for the Ascon implementations

Version Frequency Mode Avg. Static Avg. Total Avg. Dynamic Real Energy per Energy per
(Mhz) Power (Watt) Power (Watt) Power (Watt) Power (Watt) block (J/64-bit) gigabit (J/Gb)

Iterated 100 Encr 0.196 0.258 0.062 0.076 6.82E-09 0.053
Iterated 50 Encr 0.202 0.233 0.031 0.038 6.82E-09 0.053
Iterated 25 Encr 0.195 0.210 0.015 0.018 6.60E-09 0.052
Iterated 100 Decr 0.198 0.261 0.063 0.077 6.93E-09 0.054
Iterated 50 Decr 0.202 0.234 0.032 0.039 7.04E-09 0.055
Iterated 25 Decr 0.196 0.212 0.016 0.020 7.04E-09 0.055
Iterated 100 Empty 0.201 0.263 0.062 0.072 2.02E-08 n.a.
Iterated 50 Empty 0.203 0.234 0.031 0.036 2.02E-08 n.a.
Iterated 25 Empty 0.196 0.213 0.017 0.020 2.21E-08 n.a.

Serialized4 100 Encr 0.190 0.235 0.045 0.046 3.38E-08 0.264
Serialized4 50 Encr 0.185 0.207 0.022 0.023 3.30E-08 0.258
Serialized4 25 Encr 0.182 0.194 0.012 0.012 3.60E-08 0.281
Serialized4 100 Decr 0.190 0.235 0.045 0.046 3.38E-08 0.264
Serialized4 50 Decr 0.185 0.207 0.022 0.023 3.30E-08 0.258
Serialized4 25 Decr 0.182 0.194 0.012 0.012 3.60E-08 0.281
Serialized4 100 Empty 0.190 0.237 0.047 0.048 1.06E-07 n.a.
Serialized4 50 Empty 0.185 0.207 0.022 0.022 9.88E-08 n.a.
Serialized4 25 Empty 0.182 0.194 0.012 0.012 1.08E-07 n.a.

Unrolled2 100 Encr 0.209 0.412 0.203 0.284 1.42E-08 0.111
Unrolled2 50 Encr 0.183 0.301 0.118 0.165 1.65E-08 0.129
Unrolled2 25 Encr 0.190 0.244 0.054 0.076 1.51E-08 0.118
Unrolled2 100 Decr 0.206 0.408 0.202 0.283 1.41E-08 0.110
Unrolled2 50 Decr 0.184 0.303 0.119 0.167 1.67E-08 0.130
Unrolled2 25 Decr 0.191 0.245 0.054 0.076 1.51E-08 0.118
Unrolled2 100 Empty 0.209 0.414 0.205 0.264 4.22E-08 n.a.
Unrolled2 50 Empty 0.184 0.306 0.122 0.157 5.02E-08 n.a.
Unrolled2 25 Empty 0.191 0.246 0.055 0.071 4.53E-08 n.a.

Unrolled4 25 Encr 0.196 0.653 0.457 0.762 9.14E-08 0.714
Unrolled4 25 Decr 0.198 0.655 0.457 0.762 9.14E-08 0.714
Unrolled4 25 Empty 0.199 0.650 0.451 0.659 2.64E-07 n.a.

Table C.1: Measurement results for the Ascon-128a implementations on a Digilent ADEPT
setup

92

Version Frequency Mode Avg. Static Avg. Total Avg. Dynamic Real Energy per Energy per
(Mhz) Power (Watt) Power (Watt) Power (Watt) Power (Watt) block (J/64-bit) gigabit (J/Gb)

Iterated 100 Encr 0.193 0.245 0.052 0.067 4.68E-09 0.073
Iterated 50 Encr 0.179 0.205 0.026 0.033 4.68E-09 0.073
Iterated 25 Encr 0.174 0.187 0.013 0.017 4.68E-09 0.073
Iterated 100 Decr 0.194 0.246 0.052 0.067 4.68E-09 0.073
Iterated 50 Decr 0.181 0.207 0.026 0.033 4.68E-09 0.073
Iterated 25 Decr 0.176 0.189 0.013 0.017 4.68E-09 0.073
Iterated 100 Empty 0.190 0.246 0.056 0.066 1.84E-08 n.a.
Iterated 50 Empty 0.182 0.211 0.029 0.034 1.90E-08 n.a.
Iterated 25 Empty 0.177 0.192 0.015 0.018 1.97E-08 n.a.

Serialized4 100 Encr 0.200 0.241 0.041 0.042 2.34E-08 0.365
Serialized4 50 Encr 0.193 0.214 0.021 0.022 2.39E-08 0.374
Serialized4 25 Encr 0.178 0.188 0.010 0.010 2.28E-08 0.356
Serialized4 100 Decr 0.201 0.242 0.041 0.042 2.34E-08 0.365
Serialized4 50 Decr 0.194 0.216 0.022 0.023 2.51E-08 0.392
Serialized4 25 Decr 0.179 0.189 0.010 0.010 2.28E-08 0.356
Serialized4 100 Empty 0.202 0.245 0.043 0.044 9.67E-08 n.a.
Serialized4 50 Empty 0.195 0.217 0.022 0.022 9.89E-08 n.a.
Serialized4 25 Empty 0.180 0.191 0.011 0.011 9.89E-08 n.a.

Unrolled2 100 Encr 0.187 0.388 0.201 0.302 1.21E-08 0.188
Unrolled2 50 Encr 0.189 0.276 0.087 0.131 1.04E-08 0.163
Unrolled2 25 Encr 0.190 0.243 0.053 0.080 1.27E-08 0.199
Unrolled2 100 Decr 0.192 0.393 0.201 0.302 1.21E-08 0.188
Unrolled2 50 Decr 0.192 0.279 0.087 0.131 1.04E-08 0.163
Unrolled2 25 Decr 0.192 0.245 0.053 0.080 1.27E-08 0.199
Unrolled2 100 Empty 0.192 0.422 0.230 0.299 4.78E-08 n.a.
Unrolled2 50 Empty 0.193 0.288 0.095 0.124 3.95E-08 n.a.
Unrolled2 25 Empty 0.192 0.253 0.061 0.079 5.08E-08 n.a.

Unrolled3 50 Encr 0.186 0.506 0.320 0.533 3.20E-08 0.500
Unrolled3 25 Encr 0.188 0.361 0.173 0.288 3.46E-08 0.541
Unrolled3 50 Decr 0.187 0.510 0.323 0.538 3.23E-08 0.505
Unrolled3 25 Decr 0.189 0.361 0.172 0.287 3.44E-08 0.538
Unrolled3 50 Empty 0.190 0.552 0.362 0.507 1.22E-07 n.a.
Unrolled3 25 Empty 0.189 0.378 0.189 0.265 1.27E-07 n.a.

Unrolled6 25 Encr 0.191 0.931 0.740 1.480 1.18E-07 1.850
Unrolled6 25 Decr 0.196 0.938 0.742 1.484 1.19E-07 1.855
Unrolled6 25 Empty 0.198 0.851 0.653 1.045 3.34E-07 n.a.

Table C.2: Measurement results for the Ascon-128 implementations on a Digilent ADEPT
setup

Version Max Frequency Slices LUT’s Register Real registers Max throughput Energy per
(Mhz) (Gb/s) gigabit (J/Gb)

Iterated 214 394 1427 1017 495 3.041 0.0537
Serialized 179 475 1806 1068 546 0.314 0.2676
Unrolled2 143 703 2341 1017 495 3.650 0.1195
Unrolled4 53 998 1297 999 477 2.253 0.7141

Table C.3: Synthesizing with wrapper on xc6slx45 csg324-3 for the Ascon-128a implemen-
tations

93

C. Measurement details for the Ascon implementations

Version Max Frequency Slices LUT’s Register Real registers Max throughput Energy per
(Mhz) (Gb/s) gigabit (J/Gb)

Iterated 258 420 1297 961 474 2.359 0.073
Serialized 199 474 1517 990 503 0.232 0.368
Unrolled2 137 572 1881 936 449 2.190 0.183
Unrolled3 72 663 2466 938 451 1.527 0.260
Unrolled6 42 1313 4371 930 443 1.341 1.853

Table C.4: Synthesizing with wrapper on xc6slx45 csg324-3 for the Ascon-128 implementa-
tions

Version Cycles for Cycles for Cycles for Time ratio Energy ratio
encryption decryption message overhead overhead/message block overhead/message block

Iterated 9 9 28 3.11 3.09
Serialized 73 73 220 3.01 3.04
Unrolled2 5 5 16 3.20 3.00
Unrolled4 3 3 10 3.33 2.88

Table C.5: The amount of clock cycles the operations take in the Ascon-128a implementa-
tions

Version Cycles for Cycles for Cycles for Time ratio Energy ratio
encryption decryption message overhead overhead/message block overhead/message block

Iterated 7 7 28 4.00 4.06
Serialized 55 55 220 4.00 4.20
Unrolled2 4 4 16 4.00 3.91
Unrolled3 3 3 12 4.00 3.74
Unrolled6 2 2 8 4.00 2.82

Table C.6: The amount of clock cycles the operations take in the Ascon-128 implementations

94

Bibliography

[1] V. T. Hoang and P. Rogaway, “On generalized feistel networks.” Cryptology
ePrint Archive, Report 2010/301, 2010. http://eprint.iacr.org/.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche1, “Duplexing
the sponge: single-pass authenticated encryption and other applications.”
Second SHA-3 candidate conference, Santa Barbara, CA, 2010. http:
//csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/
presentations/DAEMEN_SpongeDuplexSantaBarbaraSlides.pdf.

[3] M. Riley, B. Elgin, D. Lawrence, and C. Matlack, “Missed alarms
and 40 million stolen credit card numbers: How target blew it.”
bloomberg, 2014. http://www.bloomberg.com/news/articles/2014-03-13/
target-missed-warnings-in-epic-hack-of-credit-card-data.

[4] A. Hern, “Could a simple mistake be how the nsa was able to crack so much en-
cryption?.” The Guardian, 2015. https://www.theguardian.com/technology/
2015/oct/15/nsa-crack-encryption-software-reusing-passwords.

[5] D. Evans, “The internet of things, how the next evolution of the internet is
changing everything.” Cisco, 2011. https://www.cisco.com/web/about/ac79/
docs/innov/IoT_IBSG_0411FINAL.pdf/.

[6] K. Rose, S. Eldridge, and L. Chapin, “The internet of things: An overview,
understanding the issues and challenges of a more connected world.” The Internet
Society (ISOC), 2015. http://www.internetsociety.org/sites/default/
files/ISOC-IoT-Overview-20151221-en.pdf/.

[7] Wikipedia, “Authenticated encryption.” https://en.wikipedia.org/wiki/
Authenticated_encryption.

[8] D. Kravets, “Uk prime minister wants backdoors into messaging apps or he’ll ban
them.” arstechnica, 2015. http://arstechnica.com/tech-policy/2015/01/
uk-prime-minister-wants-backdoors-into-messaging-apps-or-hell-ban-them/.

[9] J. J. Grimmett, “Encryption export controls (crs report no. rl30273),” 2001.
http://www.au.af.mil/au/awc/awcgate/crs/rl30273.pdf/.

95

http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/presentations/DAEMEN_SpongeDuplexSantaBarbaraSlides.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/presentations/DAEMEN_SpongeDuplexSantaBarbaraSlides.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/presentations/DAEMEN_SpongeDuplexSantaBarbaraSlides.pdf
http://www.bloomberg.com/news/articles/2014-03-13/target-missed-warnings-in-epic-hack-of-credit-card-data
http://www.bloomberg.com/news/articles/2014-03-13/target-missed-warnings-in-epic-hack-of-credit-card-data
https://www.theguardian.com/technology/2015/oct/15/nsa-crack-encryption-software-reusing-passwords
https://www.theguardian.com/technology/2015/oct/15/nsa-crack-encryption-software-reusing-passwords
https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf/
https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf/
http://www.internetsociety.org/sites/default/files/ISOC-IoT-Overview-20151221-en.pdf/
http://www.internetsociety.org/sites/default/files/ISOC-IoT-Overview-20151221-en.pdf/
https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Authenticated_encryption
http://arstechnica.com/tech-policy/2015/01/uk-prime-minister-wants-backdoors-into-messaging-apps-or-hell-ban-them/
http://arstechnica.com/tech-policy/2015/01/uk-prime-minister-wants-backdoors-into-messaging-apps-or-hell-ban-them/
http://www.au.af.mil/au/awc/awcgate/crs/rl30273.pdf/

Bibliography

[10] “Announcing development of a federal information processing standard for
advanced encryption standard.” National Institute of Standards and Technol-
ogy,Docket No. 960924272-6272-01,RIN 0693-ZA13, 1997. http://csrc.nist.
gov/archive/aes/pre-round1/aes_9701.txt/.

[11] S. Babbage, C. D. Canniere, A. Canteaut, C. Cid, H. Gilbert, T. Johansson,
M. Parker, B. Preneel, V. Rijmen, and M. Robshaw, “The estream portfolio
(rev. 1).” ECRYPT Network of Excellence, 2008. http://www.ecrypt.eu.org/.

[12] “Announcing request for candidate algorithm nominations for a new crypto-
graphic hash algorithm (sha-3) family.” National Institute of Standards and Tech-
nology,Docket No. 070911510-7512-01, 2007. https://www.gpo.gov/fdsys/
pkg/FR-2007-11-02/html/E7-21581.htm/.

[13] X. Wang and H. Yu, “How to break md5 and other hash functions.” EURO-
CRYPT’05 Proceedings of the 24th annual international conference on Theory
and Applications of Cryptographic Techniques, pp. 19-35, 2005.

[14] V. Rijmen and E. Oswald, “Update on sha-1.” Cryptology ePrint Archive, Report
2005/010, 2005. http://eprint.iacr.org/.

[15] “Caesar competion call draft.” CAESAR commitee, 2014. http://
competitions.cr.yp.to/caesar-call-5.html/.

[16] “Caesar commitee members.” CAESAR commitee, 2015. http://competitions.
cr.yp.to/caesar-committee.html/.

[17] M. Bellare, P. Rogaway, and D. Wagner, “Eax: A conventional authenticated-
encryption mode.” Cryptology ePrint Archive, Report 2003/069, 2003. http:
//eprint.iacr.org/.

[18] F. Abed, C. Forler, and S. Lucks, “General overview of the authenticated schemes
for the first round of the caesar competition.” Cryptology ePrint Archive, Report
2014/792, 2014. http://eprint.iacr.org/.

[19] Y. Zheng, T. Matsumoto, and H. Imai, “On the construction of block ciphers
provably secure and not relying on any unproved hypotheses.” Advances in
Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference,
1989. http://eprint.iacr.org/.

[20] Wikipedia, “Block cipher mode of operation.” https://en.wikipedia.org/
wiki/Block_cipher_mode_of_operation.

[21] J. Jean, I. Nikolić, and T. Peyrin, “Joltik v1,” 2014. http://competitions.cr.
yp.to/round1/joltikv1.pdf/.

[22] J. Jean, I. Nikolić, and T. Peyrin, “Tweaks and keys for block ciphers: the
tweakey framework.” Cryptology ePrint Archive, Report 2014/831, 2014. http:
//eprint.iacr.org/.

96

http://csrc.nist.gov/archive/aes/pre-round1/aes_9701.txt/
http://csrc.nist.gov/archive/aes/pre-round1/aes_9701.txt/
http://www.ecrypt.eu.org/
https://www.gpo.gov/fdsys/pkg/FR-2007-11-02/html/E7-21581.htm/
https://www.gpo.gov/fdsys/pkg/FR-2007-11-02/html/E7-21581.htm/
http://eprint.iacr.org/
http://competitions.cr.yp.to/caesar-call-5.html/
http://competitions.cr.yp.to/caesar-call-5.html/
http://competitions.cr.yp.to/caesar-committee.html/
http://competitions.cr.yp.to/caesar-committee.html/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
http://competitions.cr.yp.to/round1/joltikv1.pdf/
http://competitions.cr.yp.to/round1/joltikv1.pdf/
http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography

[23] H. Wu and T. Huang, “The authenticated cipher morus (v1),” 2015. http:
//competitions.cr.yp.to/round2/morusv11.pdf/.

[24] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.1,” 2015.
http://competitions.cr.yp.to/round2/asconv11.pdf/.

[25] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Permutation-based
encryption, authentication and authenticated encryption.” DIAC – Directions in
Authenticated Ciphers, 2012. http://keccak.noekeon.org/KeccakDIAC2012.
pdf/.

[26] S. Choi, R. Scrofano, and V. K. Prasanna, “Energy-efficient design of kernel
applications for fpgas through domain-specific modeling.” 5th annual Military
and Aerospace Programmable Logic Devices, 2002.

[27] V. K. Prasanna, “Energy-efficient computations on fpgas.” J. Supercomput., vol.
32, no. 2, pp. 139–162, 2005.

[28] A. Raghunathan, N. K. Jha, , and S. Dey, “High-level power analysis and
optimization.” Kluwer Academic Publishers, 1998.

[29] J. Ou and V. K. Prasanna, “A methodology for energy efficient fpga designs using
malleable algorithms.” 14th International Conference, FPL 2004, pp. 729-739,
2004.

[30] J. Ou and V. K. Prasanna, “Xilinx power estimator user guide.” Xil-
inx, 2015. http://www.xilinx.com/support/documentation/sw_manuals/
xilinx2016_1/ug440-xilinx-power-estimator.pdf.

[31] “Fips 197, advanced encryption standard.” National Institute of Standards
and Technology, 2001. http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf.

[32] P. Hämäläinen, M. Hännikäinen, and T. D. Hämäläinen, “Efficient hardware
implementation of security processing for ieee 802.15.4 wireless networks.” 48th
Midwest Symposium on Circuits and Systems, pp. 484-487, 2005.

[33] P. Chodowiec and K. Gaj, “Very compact fpga implementation of the aes
algorithm.” 5th International Workshop, Cologne, Germany, pp.319-333, 2003.

[34] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact rijndael hardware
architecture with s-box optimization.” Advances in Cryptology — ASIACRYPT,
pp. 239-254, 2001.

[35] P. Hämäläinen, T. Alho, M. Hännikäinen, and T. D. Hännikäinen, “Design and
implementation of low-area and low-power aes encryption hardware core.” 9th
EUROMICRO Conference on Digital System Design, 2006.

97

http://competitions.cr.yp.to/round2/morusv11.pdf/
http://competitions.cr.yp.to/round2/morusv11.pdf/
http://competitions.cr.yp.to/round2/asconv11.pdf/
http://keccak.noekeon.org/KeccakDIAC2012.pdf/
http://keccak.noekeon.org/KeccakDIAC2012.pdf/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug440-xilinx-power-estimator.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug440-xilinx-power-estimator.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Bibliography

[36] X. Zhang and K. K. Parhi, “Implementation approaches for the advanced
encryption standard algorithm.” IEEE Circuits and Systems Magazine (Volume
2, Issue: 4), pp. 24-46, 2003.

[37] H. Groß, E. Wenger, C. Dobraunig, and C. Ehrenhöfer, “Suit up!—made-to-
measure hardware implementations of ascon.” Digital System Design (DSD),
Euromicro Conference, pp. 645-652, 2015.

[38] “Xilinx power estimator user guide.” Xilinx. http://www.xilinx.com/video/
hardware/power-optimization-using-vivado.html.

[39] N. Grover and M. K. Soni, “Reduction of power consumption in fpgas - an
overview.” I.J. Information Engineering and Electronic Business, pp. 50-69, 2012.

[40] C. Cernazanu-Glavan, S. Fedeac, A. Amaricai-Boncalo, and M. Marcu, “Energy
profiling of fpga designs.” IEEE International Symposium on Robotic and Sensors
Environments (ROSE), pp. 118-123, 2014.

[41] “Spartan-6 fpga configurable logic block user guide.” Xilinx, 2010. http://www.
xilinx.com/support/documentation/user_guides/ug384.pdf.

[42] D. Meidanis, K. Georgopoulos, and I. Papaefstathiou, “Fpga power consumption
measurements and estimations under different implementation parameters.”
International Conference on Field-Programmable Technology (FPT), pp. 1-6,
2011.

[43] “Xilinx power tools tutorial for spartan-6 and virtex-6 fpgas.” Xil-
inx, 2010. http://www.xilinx.com/support/documentation/sw_manuals/
xilinx11/ug733.pdf.

[44] R. Jevtic and C. Carreras, “Power measurement methodology for fpga devices.”
IEEE Transaction on Instrumentation and Measurement, Vol. 60, No. 1, 2011.

[45] “Power measurements on igloo2 evaluation kit.” Microsemi,
2014. http://www.microsemi.com/document-portal/doc_view/
132967-ac411-power-measurements-on-igloo2-evaluation-kit.

[46] “Sakura-g specifications.” Morita Tech Co., LTD., 2013.

[47] “Modelsim pe student edition.” Mentor Graphics, 2015. https://www.mentor.
com/company/higher_ed/modelsim-student-edition/.

[48] “Ise design suite.” Xilinx, 2013. http://www.xilinx.com/products/
design-tools/ise-design-suite.html.

[49] “Atlys board reference manual.” Xilinx, 2013. http://www.xilinx.
com/support/documentation/university/XUP%20Boards/XUPAtlys/
documentation/Atlys_rm.pdf.

98

http://www.xilinx.com/video/hardware/power-optimization-using-vivado.html
http://www.xilinx.com/video/hardware/power-optimization-using-vivado.html
http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug733.pdf
http://www.microsemi.com/document-portal/doc_view/132967-ac411-power-measurements-on-igloo2-evaluation-kit
http://www.microsemi.com/document-portal/doc_view/132967-ac411-power-measurements-on-igloo2-evaluation-kit
https://www.mentor.com/company/higher_ed/modelsim-student-edition/
https://www.mentor.com/company/higher_ed/modelsim-student-edition/
http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPAtlys/documentation/Atlys_rm.pdf
http://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPAtlys/documentation/Atlys_rm.pdf
http://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPAtlys/documentation/Atlys_rm.pdf

Bibliography

[50] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M. U. Sharif, and
K. Gaj, “Gmu hardware api for authenticated ciphers.” Cryptology ePrint
Archive, Report 2015/669, 2015. http://eprint.iacr.org/.

[51] “Brutus framework with reference c-codes of the ciphers in the caesar competi-
tion.” GitHub, 2015. https://github.com/mjosaarinen/brutus.

[52] Wikipedia, “Field-programmable gate array.” https://en.wikipedia.org/
wiki/Field-programmable_gate_array.

[53] P. Clarke, “Xilinx launches spartan-6, virtex-6 fpgas.” EETimes, 2009. http:
//www.eetimes.com/document.asp?doc_id=1311532.

[54] “Spartan-6 fpga family.” www.xilinx.com, 2015. http://www.xilinx.com/
products/silicon-devices/fpga/spartan-6.html.

[55] “Spartan-6 family overview.” Xilinx, 2011. http://www.xilinx.com/support/
documentation/data_sheets/ds160.pdf.

[56] “Synthesis and simulation design guide.” Xilinx, 2009. http://www.xilinx.
com/support/documentation/sw_manuals/xilinx11/sim.pdf.

[57] “Targeting and retargeting guide for spartan-6 fpgas.” Xilinx, 2010. http:
//www.xilinx.com/support/documentation/white_papers/wp309.pdf.

[58] “Sakura.” SAKURA website, 2016. http://satoh.cs.uec.ac.jp/SAKURA/.

[59] Wikipedia, “Rs-232.” https://en.wikipedia.org/wiki/RS-232.

[60] “Agilent 6000 series oscilloscope, user guide.” Agilent Technologies, 2006. http:
//cp.literature.agilent.com/litweb/pdf/54684-97011.pdf.

[61] Wikipedia, “Advanced encryption standard.” https://en.wikipedia.org/
wiki/Advanced_Encryption_Standard.

[62] Wikipedia, “Mds matrix.” https://en.wikipedia.org/wiki/MDS_matrix.

[63] “Spartan-6 libraries guide for hdl designs.” Xilinx, 2009. http://www.xilinx.
com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.pdf.

99

http://eprint.iacr.org/
https://github.com/mjosaarinen/brutus
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://www.eetimes.com/document.asp?doc_id=1311532
http://www.eetimes.com/document.asp?doc_id=1311532
http://www.xilinx.com/products/silicon-devices/fpga/spartan-6.html
http://www.xilinx.com/products/silicon-devices/fpga/spartan-6.html
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/sim.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/sim.pdf
http://www.xilinx.com/support/documentation/white_papers/wp309.pdf
http://www.xilinx.com/support/documentation/white_papers/wp309.pdf
http://satoh.cs.uec.ac.jp/SAKURA/
https://en.wikipedia.org/wiki/RS-232
http://cp.literature.agilent.com/litweb/pdf/54684-97011.pdf
http://cp.literature.agilent.com/litweb/pdf/54684-97011.pdf
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/MDS_matrix
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/spartan6_hdl.pdf

	Preface
	Abstract
	Samenvatting
	List of Figures
	List of Tables
	List of Abbreviations and Symbols
	Introduction
	Competition for Authenticated Encryption: Security, Applicability, and Robustness
	Authenticated Encryption
	Outline

	The Candidate Ciphers
	Ciphers in the Competition
	Joltik
	Morus
	Ascon
	Conclusion

	Literature Review
	High Level Design Methodology
	Hardware Implementations of Similar Cryptographic Ciphers
	Low Level Energy Optimization's
	Energy Estimation and Measurement
	Conclusion

	The Implementation Approach
	The General Approach
	The GMU Hardware API for Authenticated Ciphers
	Approach for the Core
	Spartan 6
	The Measuring Setup
	Conclusion

	The Implementation of Joltik
	The Structure of Joltik
	The Iterated Implementation
	The Serialized Implementations
	The Unrolled Implementations
	The Measurements Results
	Interpretation of the Results
	Conclusion

	The Implementation of Morus
	The Structure of Morus
	The Iterated Implementation
	The Serialized Implementation
	The Unrolled Implementations
	The Measurements Results
	Interpretation of the Results
	Conclusion

	The Implementation of Ascon
	The Structure of Ascon
	The Iterated Implementation
	The Serialized Implementations
	The Unrolled Implementations
	The Measurements Results
	Interpretation of the Results
	Conclusion

	Comparison of the Ciphers
	The Performance of the Ciphers
	Global Optimizations on the Ciphers
	Conclusion

	Conclusion
	Empirical Findings
	Limitations
	Further Direction of Research

	Measurement details for the Joltik implementations
	Measurement details for the Morus implementations
	Measurement details for the Ascon implementations
	Bibliography

