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ABSTRACT

In this paper we describe how we successfully extended the
Model-Based Feature Enhancement (MBFE)-algorithm tatlypin
remove additive and convolutional noise from corruptedeshe
Although a model of the clean speech can incorporate priowkn
ledge into the feature enhancement process, this modelngeio
yields an accurate fit if a different microphone is used. Ti@¢he
resulting performance degradation, we merge a new iter&iv-
algorithm to estimate the channel, and the MBFE-algoritbmret
move non-stationary additive noise. In the latter, the patars

of a shifted clean speech HMM and a noise HMM are first com-
bined by a Vector Taylor Series approximation and then thest
conditional MMSE-estimates of the clean speech are cakulla
Recognition experiments confirmed the superior performant
the Aurora4 recognition task. An average relative reductio
WER of 12% and 2.8% on the clean and multi condition training
respectively, was obtained compared to the Advanced FEodt-
standard.

1. INTRODUCTION
To cure the performance degradation of automatic speeduy+ec
nition systems in the presence of both additive noise andreda
variations, several compensation techniques are ofterbiceuh
(e.g. Spectral Subtraction and CMS, Wiener filtering anddli
equalisation [1]). However, results indicate that a jostiraation
of both types of noise is feasible [2, 3]. In this paper we Bon a
technique that simultaneously removes additive and catieoial
noise from the acoustic feature sequence prior to recagniti
Previously we have implemented an MBFE-algorithm for
noise robust speech recognition [4], the ideas of which Viese
introduced by Ephraim [5] in the context of speech enhanoéme
In this technigue we use one Hidden Markov Model (HMM) with
Gaussian observation probabilities for the clean speepbtice
feature vectors, and another Gaussian HMM for the pertgrbin
noise cepstral feature sequence. Based on these statistidals,
the parameters of a combined HMM of the noisy speech are esti-
mated. To this end, the non-linear model of the acousticrenvi
ment in the cepstral domain is approximated by a first ordetove
Taylor Series. Subsequently, the resulting product HMMsisalto
calculate the a posteriori probabilities of each combirsgzkéch,
noise) state corresponding to a sequence of observatidorsec
For each combined state pair also an estimate of the comdspo
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ing clean speech can be calculated. Finally, the global MMSE
estimate of the clean speech, given the noisy speech, imettas

a linear combination of these state-conditional estimatEghted

by the a posteriori probabilities.

In this work a valuable extension to the MBFE-algorithm is
proposed, that enables us to simultaneously remove aglthitiok-
ground noise and convolutional channel distortions. Hsiigdor
MBFE, such a joint noise removal is superior to successiuely
moving these 2 types of mismatch effect between trainingestel
ing conditions. The reason is that the MBFE-speech modeéhed
with one microphone, no longer yields an accurate fit if aedéht
microphone is used. Moreover, this model mismatch alsa&ffe
the additive noise parameter estimation. Hence, we ardromey
that incorporating the effect of convolutional distortsomto our
speech model will further improve the accuracy. To this emel,
propose an iterative EM-algorithm that updates an initiermel
estimate to maximise the likelihood of the observed dataceOn
initialised, our algorithm proves to generate a stable nbhasti-
mate, even when only silence frames are observed (and hence n
speech or channel information are present in the obsertajl da

Section 2 presents a detailed description of the extended
MBFE-algorithm to simultaneously remove additive and @snv
lutional noise. An evaluation of the performance of the iy
preprocessing technique on the Aurora4 large vocabulara-di
tion task and the obtained recognition accuracy, can bedfaoin
section 3. Finally, conclusions and directions for futumrkvare
discussed in section 4.

2. CONVOLUTIONAL MBFE

2.1. Effect of convolutional noise

The parametric model of the acoustic environment, usedif th
work, is very similar to [6], and is shown in figure 1. Since the
enhancement takes place in the cepstral domain, the appati
relationship between the distorted speech vegtothe additive
noisent, the channeh and the clean speeshof framet, is given

noise N(t)
clean speech noisy speech
———— | channelh
s(t) Z(t) X(t)

Fig. 1. Modéel of the acoustic environment.
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and similarly for the delta-deltas. The next section désxithe

A
h exp(ibeh exp(Ibeh) iterative EM-algorithm to estimate the channel online.

4 Mel-Spectral Domain

Model Combination 2.2. Channd estimation
¥ Mel-Spectral Domain The auxiliary function that is optimised by the iterative EM
algorithm, is given by [7]:
Cepstral Domain QIhy = > p(i. jIx. h,A¥)log (p(x.i. jIh, %) (7)
O O (%))
@ or alternatively, the following function needs to be maxseu:
Corrupted Speech HMM X Z Vt(I’J) log (p(X|i, j,h, )LX)) (8)

(%))
Herei andj are hidden variables that denote the speech and the
noise state sequence respectivalys the observed noisy speech,
A and yt(l’J) are the a posteriori probabilities as mentioned before.

Because of the Gaussian form pfx|i, j, h, 2*) (eq. (4)), this
problem can be rewritten as a maximisation of

last iteration ?

Observed
<« Noisy Speech

Channel Update

Fig. 2. HMM combination principle with iterative channel estima- (, i x \ /<x 71 x
tion. (Z)Xt: (Xt _“<i,j>> <E(i,J)) (Xt _“(i,1)>
1]
©)
Then the following approximations are applied. Firstlyyca F

andG are non-linear functions &f, we neglect the change &

x ~ f(s,n.h)
N _ _ with different values oh. Secondly, we linearise the dependency
~ Clog(exp(C™ (st +h) +exp(C™iny)) (1) of 1% ;, aroundh, such that we can write

in which C~* denotes the inverse of the DCT-mat@x In MBFE
boths, nt as well asxt are modeled by HMMs in the cepstral do-

by:

i) ~ Clog(exp(C(uf+M)+exp(Ctul))

main with Gaussian observation pdfs for each sgats explained + Fq.j) sh (10)
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in which’ indicates matrix transpose, and the gradients of the com-

plxlad =i.a' =j] = NOx; M%(i,j)’ Ez(i,j)) (4) bination functionf (s, nt, h) have the closed form:
Here, the parameters of the corrupted speech HMivare ob- Eo Cdi 1 c-! (13
tained by using a first order Veector Taylor Series (VTS) agpro op = 1ag 1 C-1(yD s_fh (13)
mation around the mearﬁ anduT to linearise eq. (1) for each + exp[ (“J T )]
state. From eq.(1) it is clear that the charimehuses a shiftofthe  G¢,jy = | —Fq ) (14)
clean speech model mea;mé, such that this MBFE-model will no
longer yield an accurate fit if a different microphone is usddw- and| denotes the unity matrix. This wa%% = Oyields

ever, once this channel is known, we can simply shift our cpee 1
model and apply MBFE as before to remove the non-stationary 0= Z Zyt F(I i (2?”-)) (xt — ME,]) - Fi.j ah)
additive noise. A global scheme of this procedure is degiate G,j) t

figure 2. Briefly, the global MMSE-estimate of the clean sjpeisc (15)
obtained as a linear combination of the state-conditionsIS\&- and hence the channel update is given by:

estimates, where the weights are given by the a posterioki-pr -1
abilities. To account for correlation effects, we take theae / x \~1 i

root (experimentally tuned) of the observation probabtiin the sh = Z F(l )] ( @i j)) Fi.j) ZVt
forward-backward algorithm, in which also an approximatuf

the dynamic parameters ®f is used. To obtain the latter, the gra-

dientsF andG of eq. (1) tosx andnt, are assumed to remain con-

stant across the time-interval on which the deltas are tzkxl)

Z F(l Ip) (EE,J))il thyt(i’j) (Xt _WD>:| (16)
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Fig. 3. Effect of noise frames on MBFE channel estimate. (top):
Noi sy speech utterances embedded in noise-only frames. (bottom):
MBFE channdl estimate in cepstral domain.

To come to a real-time implementation, this channel update f
mula is implemented with an exponential weighting of nurtara

and a mel-scaled triangular filter-bank are applied, anddhbelt-
ing mel spectrum with 24 coefficients is transformed intodbp-
stral domain. From this static parameter set, the global MMS
estimate of the clean speech is then calculated by the eedend
MBFE-algorithm. Afterwards, each sentence is smoothechby t

2
low-pass filterH (z) = 1/ (2 — 2—1) . As in [4], the first and last
mel spectra are then removed and the remaining 22 specefill co
ficients are mean normalised. Finally, the 66 features twulr
from adding the first and second order time derivatives,dsiced
by the MIDA-algorithm to 39 dimensions, which are then deeor
lated.

3.2. Back-end recogniser

The speaker-independent LVCSR-system that has been gedelo
by the ESAT speech group of the K.U.Leuven, is used as a back-
end recogniser because of its fast experiment turn-aroomedand
good baseline accuracy.

The gender independent acoustic modeling is based on a set
of 45 phones, without specific function words. A phoneticidec
sion tree, developed for the clean and multi condition trgjriata
respectively, defines the 4961 tied states in the cross-eartxt-
dependent (but position-independent) models. In the fagting
step, acoustic models without tying of the Gaussians at&lini
ized, resulting in a total of 21k Gaussians. Then full tyingmo
all states is allowed, the 2k most promising Gaussians e st

and denominator. One of the advantages of eq. (16), comparedare selected based on the distances between Gaussiansitto av

to CMS for instance, is that it does not need a voice activity d
tector. Indeed, in case the input data contains only additdise
(no speech and no channel) the gradigpt;j) approximates zero,
such that the updatéh automatically becomes very small. Al-
though eq. (16) exhibits a strong similarity with the one 8j to
remove convolutional filtering effects, the latter does mete this
advantage. Experiments confirmed that a good recognition-ac
racy can be obtained with zero as an initial channel estintiade
applying 10 EM-iterations on the first 500 frames, while foery
next 100 frames exponential weighting and only 5 EM-itexasi
are applied. The stability of our channel estimate in thes@nee
of noise, can clearly be seen in figure 3. This plot shows a-utt
ance (between the vertical bars) from the Aurora2 datatset€ (
N1, SNR15), that is embedded in noise-only frames from theesa
noise condition. On the left of the vertical bars, we seefihianot
updated after initialisation, while in the middle part theonel es-
timate converges to a stable value during the noisy speaates.
Finally, on the right of the bars, this obtained value is aderdly
changed during the noise-only input frames. We concludetiiea
influence of the noise frames on the obtained channel estimat
very small.

3. EXPERIMENTS

3.1. Front-end processing

prohibitively large models) and the models are re-estithatehe
second training step. Finally, the number of Gaussiansrtedu
reduced to an average of 200 per state, using the occupatey cr
rion, and the third training step is applied.

A bigram language model for a 5k-word closed vocabulary is
provided by Lincoln Laboratory, while decoding is done with
time-synchronous beam search algorithm.

3.3. MBFE front-end models

The design of the MBFE front-end noise model and clean speech
model is now described. In our experiments the noise model co
sists of a one-state single-Gaussian HMM. This HMM is ol&din

by estimating the mean on the first 30 and the last 30 frames of
each sentence. As before [4], the variance of this Gaussias-i
timated from the same 60 frames, but is pooled over all 330 sen
tences of the noise type, thereby simulating the scenaridhioh
some of the noise model parameters can be estimated offlivee. T
choice of this noise HMM topology is motivated by previous re
sults, which indicated little performance loss as comp&vedore
complex noise models, while offering a tractable compateti
load.

This noise model is combined with a very simple speech
model, namely instead of a phoneme HMM we use an 128 Gaus-
sian ergodic HMM. The latter is obtained by EM-clustering th
clean training dataset provided in the Aurora4 databasthoAgh

Experiments were conducted on the Aurora4 large vocabulary an ergodic HMM incorporates less prior knowledge on thenadid

database, derived from the WSJO Wall Street Journal 5k-diard
tation task. For each of the 2x7 test sets (no noise, car,l®abb
restaurant, street, airport, train), all 330 utterancet) an SNR-
level that ranges from 5 dB to 15 dB, are evaluated.

state sequence during decoding, incorrect decisions caerdse
corrected by the more detailed acoustic models in the badk-e
recogniser. Experimental results showed that the redogratcu-
racy is hardly affected with this simpler speech model, ¢liengh

To extract the acoustic features from the speech signal, firs in this model less Gaussians are used. It was also verifiedltisa
a power spectrum is calculated every 10 ms on a 32 ms windowtering the clean training dataset to more Gaussians (2562y 5
of the pre-emphasized 16 kHz data. Then a Hamming window yielded no significant accuracy gain. This implies that natyo



Aurora4, 16 kHz sampling, no compression, no end pointing.

Close Talk Far Talk
TEST 1] 2] 3] 415 ] 6 ] 7 [[mcil] 8] 9 [1I0] 11 ] 12 ] 13 ] 14 JImic2] Avg.

clean

MIDA 4.95|17.97| 32.84| 39.88| 36.67| 28.21| 38.24|| 28.39| 23.59| 39.44| 50.68| 55.35| 56.81| 47.30| 56.42|| 47.08| 37.74
AFE 5.44|17.88| 23.07| 27.93| 26.86| 22.90| 24.72|| 21.26| 25.31| 35.40| 42.26| 43.62| 46.12| 42.14| 42.87|| 39.67| 30.47
MBFE |4.88| 8.67 | 20.85| 28.99| 23.95| 22.10| 23.15|| 18.94| 21.91| 30.30| 39.42| 44.55| 42.93| 39.62| 42.24| 37.28| 28.11
conv MBFE| 4.93| 8.43 | 20.51| 28.81| 22.77| 20.68| 23.30|| 18.49| 19.24| 26.98| 37.40| 42.91| 40.87| 38.09| 40.11|| 35.09| 26.79

multi

MIDA 7.77| 9.04 | 15.86| 19.54| 17.88| 14.65| 19.93|| 14.95| 15.43| 18.53| 30.17| 31.44| 33.03| 28.34| 34.17| 27.30| 21.13
AFE 6.84|10.84| 15.28| 19.19| 18.05| 14.46| 17.62|| 14.61| 16.27| 22.03| 29.42| 31.31| 32.43| 28.41| 30.97|| 27.26| 20.94
MBFE |7.15| 8.35|15.73|21.02| 17.84| 15.82| 17.99|| 14.84| 17.39| 21.11| 30.75| 33.53| 33.83| 30.64| 33.96|| 28.74| 21.79
conv MBFE| 7.25| 8.03 | 15.75| 20.21| 16.91| 15.65| 17.04|| 14.41| 13.21| 17.58| 28.99| 32.22| 31.23| 28.96| 32.06|| 26.32| 20.36

Table 1. Word error rates without enhancement, with Advanced Front-End preprocessing, with MBFE-enhancement and with convol utional
MBFE-enhancement; clean and multi condition training.

the computational load, which is proportional to the totainter Nevertheless, further optimisations in the context of MBFE
of Gaussians, is decreased, but also the forward-backwgod a  can still be considered, such as finding the optimal methacio
rithm becomes trivial and the training of the speech modkdss the noise model. Currently, the noise HMM is fixed for eaclseoi
complex. condition (ie. SNR-level and noise type). However, withoatine

adaptation of the noise model, frames that are highly likelyon-
tain only noise could be used to adapt the mean of the noise HMM

3.4. Experimental results to the varying environment.
The first reference results (labeled MIDA in table 1) are ivtatd
by leaving out the MBFE-enhancement and the smoothing from 5. REFERENCES
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